Accelerate Bayesian analytics workflows in 'R' through interactive modelling,
    visualization, and inference. Define probabilistic graphical models using directed
    acyclic graphs (DAGs) as a unifying language for business stakeholders, statisticians, 
    and programmers. This package relies on interfacing with the 'numpyro' python package. 
| Version: | 0.6.0 | 
| Depends: | R (≥ 4.1.0) | 
| Imports: | DiagrammeR (≥ 1.0.9), dplyr (≥ 1.0.8), magrittr (≥ 1.5), ggplot2 (≥ 3.4.0), rlang (≥ 1.0.2), purrr (≥ 1.0.0), tidyr (≥ 1.1.4), igraph (≥ 1.2.7), stringr (≥ 1.4.1), cowplot (≥
1.1.0), forcats (≥ 0.5.0), rstudioapi (≥ 0.11), lifecycle (≥
1.0.2), reticulate (≥ 1.30) | 
| Suggests: | knitr, covr, testthat (≥ 3.0.0), rmarkdown, extraDistr, mvtnorm | 
| Published: | 2025-09-12 | 
| DOI: | 10.32614/CRAN.package.causact | 
| Author: | Adam Fleischhacker [aut, cre, cph],
  Daniela Dapena [ctb],
  Rose Nguyen [ctb],
  Jared Sharpe [ctb] | 
| Maintainer: | Adam Fleischhacker  <ajf at udel.edu> | 
| BugReports: | https://github.com/flyaflya/causact/issues | 
| License: | MIT + file LICENSE | 
| URL: | https://github.com/flyaflya/causact, https://www.causact.com/ | 
| NeedsCompilation: | no | 
| SystemRequirements: | Python and numpyro are needed for Bayesian
inference computations; python (>= 3.8) with header files and
shared library; numpyro (= v0.12.1;
https://https://num.pyro.ai/en/latest/index.html); arviz (=
v0.15.1; https://https://python.arviz.org/en/stable/) | 
| Citation: | causact citation info | 
| Materials: | README, NEWS | 
| In views: | Bayesian | 
| CRAN checks: | causact results |