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Abstract

An R package bmemLavaan for estimating and testing mediation effect in mediation
models is developed. The package uses the popular R package lavaan to specify mediation
models. The package is especially useful to handle complex real data such as missing data
and non-normal data, with four methods to deal with different missing data mechanisms
and a robust method to deal with non-normal data. Three methods are included to
conduct significance testing for mediation effects, two of which can efficiently deal with
non-normal data. The package can also be used for sample size planning. This paper
explains the aims and principles of the package and provides six examples of different
complexities on how to use the package to conduct different types of mediation analysis.
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1. Introduction
Mediation analysis is widely used in social, behavioral, and education research (e.g., MacK-
innon, Fairchild, and Fritz 2007; Preacher 2015) as well as in health and medical studies
(e.g., Lange, Hansen, Sørensen, and Galatius 2017; VanderWeele 2016). Mediation analysis
can help researchers understand the mechanism why one variable is related to another vari-
able. For example, Salthouse (1993) found that processing speed mediated the relationship
between age and cognition, which led to a theory to explain the adult age differences in cog-
nition. Although simple mediation analysis can be conducted in the regression framework,
more complex mediation analysis is typically done in the structural equation modeling (SEM)
framework (e.g., Iacobucci 2008; MacKinnon 2008).
There are two paradigms for studying mediation, the traditional approach and the causal
mediation approach. The traditional approach was first systematically discussed by Baron
and Kenny (1986). The method simply decomposes the total effect of an input variable X
on an outcome variable Y to the direct effect from X and Y and the indirect effect through
a mediator M . The method is still the dominated method in mediation analysis although it
heavily relies on the assumption of no unmeasured confounding effects. The second approach,
now often called causal mediation method, was typically built under the potential outcomes
perspective (e.g., Robins and Greenland 1992) and was made popular recently through the
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work by Imai and colleagues (e.g., Imai, Keele, and Tingley 2010; Tingley, Yamamoto, Hirose,
Keele, and Imai 2014). Currently, the traditional approach is still more widely used in social
sciences because of its flexibility to handle complex multivariate and longitudinal models
as well as different types of data distributions (MacKinnon and Fairchild 2009; Tofighi and
Thoemmes 2014; Preacher 2015).
Many commercial and free software programs can be used to conduct mediation analysis.
For example, the SEM software Mplus can be used to conduct both traditional and causal
mediation analysis (Muthén and Muthén 1998-2021). Other popular statistical programs such
as SAS and Stata can also be used to conduct mediation analysis. Several R packages are
available for each type of mediation analysis. For example, the packages mediation (Tingley
et al. 2014) and mma (Yu and Li 2017) can be used to conduct casual mediation analysis
with one or multiple mediators. The packages RMediation (Tofighi and MacKinnon 2011)
and bmem (Zhang and Wang 2013b) can be used to conduct traditional mediation analysis.
Particularly, we initially developed the R package bmem (Zhang and Wang 2013b) to expand
the ability of the widely used R package sem(Fox 2006) for advanced mediation analysis. It
eases the use of the bootstrap method for testing the mediation effects, and it also allows
the handling of missing data and non-normal data (Zhang and Wang 2013a). Nowadays,
the package lavaan (Rosseel 2012) has become the most popular R package for SEM. lavaan
is also under active development with more functionalities than sem. At the same time,
bmem is not actively maintained any more, and also lacks a document to explain how it
can be used. Therefore, we decide to rewrite bmem to develop the package bmemLavaan to
take advantage of both lavaan and bmem for mediation analysis. The package bmemLavaan
provides the following useful features.

• bmemLavaan uses the same syntax as lavaan to specify a mediation model. This can
benefit the existing large user base of lavaan and make bmemLavaan easy to adopt.

• In addition to the basic bootstrap method available in lavaan, bmemLavaan offers three
types of bootstrap confidence intervals including the percentile, bias-corrected, and
bias-corrected and accelerated intervals.

• bmemLavaan can handle missing data through listwise deletion, pairwise deletion, full
information maximimum likelihood, and two-stage methods as well as multiple impu-
tation. bmemLavaan also expands the two-stage method for easy inclusion of auxiliary
variables to handle certain types of missing not at random data.

• bmemLavaan implements an M-estimator to handle non-normal data using the robust
procedure developed by Yuan and Zhang (2012). The method can also handle non-
normal data and missing data simultaneously.

• bmemLavaan provides functions for statistical power analysis for testing mediation ef-
fects (Zhang and Wang 2013a).

The rest of the paper is organized as follows. In Section 2, we provide an overview of the meth-
ods behind the development of bmemLavaan. In Section 3, we discuss the implementation
and main functions of bmemLavaan. In Section 4, we provide several examples to illustrate
the use of bmemLavaan. In Section 5, we discuss the limitations and future directions of the
development of bmemLavaan.
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2. Methods
This section reviews the methods implemented in bmemLavaan based on a general SEM
model. The model can be specified as a multiple-group LISREL (LInear Structural RELa-
tionship) model as follows:

xg =Λxgξg + δg,

yg =Λygηg + ϵg,

ηg =Bgηg + Γgξg + ζg,

(1)

where the subscript g represents the gth group. Note that the parameters in model (1) are
group specific. For the sake of simplicity, the subscript g is dropped in the following discussion.
The first two equations in model (1) are called measurement equations. In this model, η is
a vector of latent endogenous variables and ξ is a vector of latent exogenous variables. x
and y are vectors of observed indicators of ξ and η, respectively, δ and ϵ are measurement
errors associated with x and y, respectively, and Λx and Λy are matrices of factor loadings.
The third equation in the model is called a structural equation, where B is a matrix of
coefficients determining the relationship among η and Γ is a matrix of coefficients specifying
the relationship between η and ξ. From a mediation analysis point of view, the coefficients
in B and Γ represent the direct relationships, while the mediation effects (indirect effects) θ
are functions of B and Γ, which is denoted as follows in the paper:

θ = I(B, Γ). (2)

2.1. Parameter estimation in mediation models
Generally speaking, to calculate a mediation effect, one first estimates the direct coefficients
in B and Γ in the SEM framework and then obtains a specific mediation effect estimate by
replacing B and Γ with their estimates in Equation (2). For example, a simple mediation
model is shown in Figure 1. In this model, X, Y , and M are input, output, and mediator,
respectively, while the coefficients a and b are direct effect coefficients.

Figure 1: A simple example of mediation model (Zhang and Wang 2013a).

The simple mediation model can be specified using two regression equations:
M = aX + eM ,

Y = bM + cX + eY .
(3)

For this simple mediation model, the mediation effect (indirect effect) is θ = I(a, b) = a × b.
The coefficients a and b in model (3) can be estimated through SEM by rewriting the model
as a LISREL model, which takes the following form:
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x = Λx ξ + δ,
X = 1 ξ + 0,
y = Λy η + ϵ,[
M
Y

]
=

[
1 0
0 1

] [
η1
η2

]
+

[
0
0

]
,

η = B η + Γ ξ + ζ,[
η1
η2

]
=

[
0 0
b 0

] [
η1
η2

]
+

[
a
c

]
ξ +

[
eM

eY

]
.

(4)

Once the estimates â and b̂ are obtained, the mediation effect can be naturally estimated as
â × b̂.
Theoretically, with the point estimates of the direct coefficients B and Γ, hypothesis testing
of the mediation effect can be conducted through the delta method (Sobel 1982). Computa-
tionally, in the case of complete data, the R package bmemLavaan first estimates the direct
coefficients using least squares methods or maximum likelihood methods assuming normal-
ity implemented in the R package Lavaan, and then estimates the mediation effects based on
Equation (2). The standard errors of these parameters including the mediation effect can also
be estimated. Based on these estimates, hypothesis testing and power analysis can further be
conducted. In addition, the R package bmemLavaan implements several methods to handling
missing data and non-normal data problems, which are detailed in Section 2.3 and Section
2.4.

2.2. Hypothesis testing and confidence interval

Once the point estimates of the mediation effects are obtained, statistical inference of me-
diation effects can be conducted (e.g. MacKinnon 2008). The Sobel test (Sobel 1982) has
been widely used to conduct significance tests in the literature. However, MacKinnon, Lock-
wood, Hoffman, West, and Sheets (2002) found through simulation study that the Sobel test
is overly conservative and thus underpowered. Therefore, tests based on bootstrap methods,
which are more powerful, are recommended for testing mediation effects. A bootstrap method
can obtain empirical distributions of unknown parameters, and confidence intervals can be
constructed for significance testing of mediation effects.
bmemLavaan implements four types of bootstrapping based CI methods, namely the normal
bootstrap CI, percentile bootstrap CI, bias-corrected (BC) bootstrap CI, and bias-corrected
and accelerated (BCa) bootstrap CI (MacKinnon, Lockwood, and Williams 2004) (refer to
Section 2.4 for details). One can also construct other types of test statistics and CIs with the
estimated parameters and corresponding bootstrap samples.

2.3. Parameter estimation methods in the presence of missing data

In many studies, especially for observational studies in behavioral and social sciences, missing
data are common. In this subsection, we review four methods that are included in the
bmemLavaan package for handling missing data. One easy and common strategy is to ignore
the observations with missing value. Listwise deletion (LD) and pairwise deletion (PD) are
two types of commonly used methods based on the strategy. Because the lack of efficiency
of LD and PD, multiple imputation (MI) is now widely used to handle missing data. Our
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package also implements a two-stage maximum likelihood (TS-ML) based on the expectation-
maximization (EM) algorithm.

Listwise deletion (LD) and pairwise deletion (PD)

In LD, a case is removed if the value of any single model variable from the case is missing, and
the mediation model is then estimated based on cases with complete observations. In PD, the
covariance between any two variables is estimated using the complete data from both vari-
ables, and an estimated variance-covariance matrix for all model variables are consequently
constructed. Based on the PD method, the number of cases could vary from covariance to
covariance, and the estimated variance-covariance matrix may not be positive definite (Little
and Rubin 2019). The direct effects in a mediation model can typically be estimated by
minimizing the discrepancy function

F = tr(SΣ−1) − log |SΣ−1| − p, (5)

where Σ is a variance-covariance matrix derived from the model under investigation, S is the
sample variance-covariance matrix, and p is the total number of observed variables in the
model. The mediation effects can be estimated using the plug-in strategy based on Equation
(2). Although the idea of the LD and PD methods is simple, they cannot utilize all the
information in the data and can be inefficient.

Multiple imputation (MI)

Multiple imputation (Little and Rubin 2019; Schafer 1997) is a procedure of filling each miss-
ing value with a set of plausible values of the true value. The multiple imputed datasets
are then analyzed using the standard procedures for complete data, and the results from
these analyses are combined to obtain point estimates of model parameters. Multiple impu-
tation has been implemented in software such as SAS and R. For bememLavaan, the following
multiple imputation algorithm for mediation analysis is implemented.

1. Let (X1, Y1), (X2, Y2) . . . , (Xp, Yp) denote (x, y) in the LISREL model (1), and let
A1, . . . , Aq denote auxiliary variables. Assume that

Z := (X1, Y1, X2, Y2, ..., Xp, Yp, A1, ..., Aq)′, (6)

follows a multivariate normal distribution and denote its complete-data parameters,
which is the corresponding mean and variance-covariance matrix, as µ and Σ, respec-
tively. Using the EM algorithm with a bootstrap (EMB) approach, we take draws from
the posterior of µ and Σ based on the observed data (Honaker and King 2010).

2. Generate K draws from the posterior of the complete-data parameters. Then make
imputations by drawing missing values from its distribution conditional on observed
data and the draws of µ and Σ. Combine the generated values with the observed data
to obtain K sets of complete data for (X1, Y1, X2, Y2, ..., Xp, Yp).

3. For the kth complete dataset (k = 1, ..., K), apply the complete data mediation analysis
to obtain an estimate of the mediation effect, denoted by I(B̂k, Γ̂k).
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4. A combined estimate (the final point estimate from MI) for the mediation effect is defined
as the average of the K complete data mediation effect estimates:

I(B̂, Γ̂) = 1
K

K∑
k=1

I(B̂k, Γ̂k). (7)

Two-stage maximum likelihood method (TS-ML)

The EM algorithm is a popular technique for handling missing data (Little and Rubin 2019;
Schafer 1997). It is an iterative method consisting of the expectation step (E-step) and max-
imization step (M-step). It starts with a guess of unknown parameter values. For example,
parameter estimates from LD can be used as starting values. In the E-step, the conditional
expectation of complete data log-likelihood function with respect to missing data give the
observed data are calculated under data distribution with current parameter values. In the
M-step, new parameter estimates are obtained by maximizing the resulting conditional ex-
pectation with respect to unknown parameters. These two steps are repeated until changes
in the parameter estimates are small enough.
A two-stage maximum likelihood (TS-ML) method using the EM algorithm is adopted in
mediation analysis in the presence of missing data. In the first stage, the EM algorithm is
applied to estimate the saturated mean and variance-covariance matrix of Z given in Equation
(6) without assuming any mediation model. In the second stage, model parameters are
estimated using the saturated variance-covariance matrix obtained from the first stage. The
two-stage strategy has been applied in the literature to deal with missing data under different
situations (Yuan, Chan, and Bentler 2000; Enders 2003). There are at least two reasons
for adopting the TS-ML method instead of the full information maximum likelihood (FIML)
method. First, the TS-ML method performs at least comparably well with the FIML method
(Savalei and Bentler 2009; Savalei and Falk 2014). Second, it is straightforward to include
auxiliary variables in the TS-ML method, but this is not case in the FIML method. To
include auxiliary variables, one only needs to augment them with the model variables directly
as shown below.
For sample i, let zi,obs and zi,miss denote the observed data and missing data, respectively.
Furthermore, let U denote the mean vector, and S denote the variance-covariance matrix of
the augmented data Z (i.e. (X1, Y1, . . . , Xp, Yp, A1, . . . , Aq)′ as mentioned in Equation (6)).
The TS-ML algorithm is detailed as follows.

1. Let e denote the desired degree of accuracy, such as 10−6, which is also the iteration
stopping criterion. U (0) and S(0) are the initial estimates from the LD method, which
are the sample mean and variance-covariance matrix for the complete observed data.

2. Let U (t) and S(t) denote the estimates of U and S at the tth iteration. For iteration t + 1,
the EM algorithm is implemented in two steps. In the E-step, calculate the conditional
expectation z

(t)
i,miss of zi,miss given zi,obs, U = U (t), and S = S(t) (refer to Appendix A

for details). In the M-step, replace zi,miss with the conditional expectation z
(t)
i,miss and

then calculate the resulting sample mean U (t+1) and sample variance S(t+1).
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3. Calculate the maximum absolute error (or absolute relative difference) between (U (t), S(t))
and (U (t+1), S(t+1)):

d = max
j,k

[∣∣∣u(t+1)
j − u

(t)
j

∣∣∣ , ∣∣∣s(t+1)
jk − s

(t)
jk

∣∣∣] ,

where uj is the j-th element of U and sjk is the (j, k)-th element of S. If d < e, stop
the iteration and go to step 4. Otherwise, go to step 2.

4. Let Û and Ŝ denote the estimates of U and S from the EM algorithm after convergence.
Let ÛM and ŜM denote the estimated mean vector and variance-covariance matrix of
(X1, Y1, . . . , Xp, Yp) in the mediation model. Then, the mediation model parameters
can be estimated by minimizing Equation (5) with S being replaced with ŜM . Denote
the resulting estimates of B and Γ by B̂ and Γ̂, respectively. The final estimator of
mediation effect is I(B̂, Γ̂).

Both MI and TS-ML methods used in bmemLavaan package can easily handle auxiliary
variables for better missing data processing by augmenting the auxiliary variables with the
model variables.

2.4. Parameter estimation methods in the presence of non-normal data

In practice, the observed data are often non-normal (Cain, Zhang, and Yuan 2017). With non-
normal data, the estimated standard errors of the parameter estimates based on the normality
assumption are biased, and the corresponding normal CI of a mediation effect is distorted.
Our package bmemLavaan allows the handling of non-normal data through bootstrap, robust
sandwich-type standard error, and robust Huber-type M-estimator.

Bootstrap method

The first solution is the bootstrap method. The normal CI is based on the asymptotic theory
and it might not perform well in finite sample situations (MacKinnon et al. 2004; Zu and
Yuan 2010). In the literature, CIs constructed using the bootstrap method have been shown
to perform better under many studied conditions (Cheung 2007; Fritz and MacKinnon 2007;
Hayes and Scharkow 2013; MacKinnon et al. 2004; Preacher and Hayes 2004; Shrout and
Bolger 2002). The algorithm for the bootstrap method is straightforward.

1. Randomly draw a sample of n individuals with replacement from the original dataset of
sample size n. The resulting sample is called a bootstrap sample.

2. With the bootstrap sample, estimate model parameters and compute mediation effects.

3. Repeat steps 1 and 2 for B times to get B sets of estimates, and bootstrap CIs of model
parameters and mediation effects are constructed based on these estimates.

Several types of bootstrap CIs have been adopted in the literature of mediation analysis
(Cheung 2007; Fritz and MacKinnon 2007; Hayes and Scharkow 2013; MacKinnon et al. 2004),
of which the percentile bootstrap CI and BC bootstrap CI are widely used in practice. The
percentile bootstrap CI is the default in the package bmemLavaan due to its simplicity and
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good performance. Let θ denote a population mediation effect, θ̂ and θ̂i its estimators from
the original data and the ith bootstrap sample (i = 1, . . . , B), respectively. The 100(1 − α)%
percentile bootstrap CI can be constructed by [θ̂i(α/2), θ̂i(1 − α/2)] with θ̂i(a) denoting the
100ath percentile of the B bootstrap estimates. Alternatively, one can use the BC bootstrap
CI, which has a better coverage probability in general. The BC bootstrap CI takes the form
[θ̂i(α̃l), θ̂i(α̃u)], where α̃l and α̃u are quantiles defined by

α̃l = Φ[2z0 + Φ−1(α/2)] and α̃u = Φ[2z0 + Φ−1(1 − α/2)],

with

z0 = Φ−1
[#{i : θ̂i < θ̂; i = 1, . . . , B}

B

]
.

Take the mediation effect θ = ab in the simple mediation model (4) for example. With the
ith (i = 1, . . . , B) bootstrapping sample, one first estimates ab as θ̂i := âib̂i, where âi and b̂i

are the estimates of a and b, respectively. One can first construct a z-test type of statistic
that takes the form z = θ̂/

̂se(θ̂), where θ̂ is the parameter estimates from the original data
and ̂se(θ̂) =

√
B−1∑B

i=1(θ̂i − θ)2 with θ = B−1∑B
i=1 θ̂i. The corresponding (1 − α) normal

approximation bootstrap CI of θ takes the form

[
θ̂ + Φ−1(α/2) × ̂se(θ̂), θ̂ + Φ−1(1 − α/2) × ̂se(θ̂)

]
, (8)

where Φ is the standard normal cumulative distribution function. This method assumes that
the bootstrap distribution can be well approximated by a normal distribution. The percentile
and BC bootstrap CIs can be constructed as discussed above for θ = ab.

Robust sandwich-type method

The second type of method is to deal with non-normal data by constructing a sandwich-type
standard error for parameter estimates (Zu and Yuan 2010). A robust CI of a mediation
effect is then obtained by replacing the normal-based standard error with the sandwich-type
standard error in Equation (8).
Recall that the simple mediation model in Figure 1 consists of two regression equations
shown in Equation (3). Denote the parameters of the model as θ = (a, b, c, σx, σϵm , σϵy ),
where σx, σϵm , and σϵy are the variances of X, eM , and eY , respectively. In what follows, we
describe the estimation procedure of θ. Denote Z = (X, M, Y ) and Z ∼ N3(µ, Σ), where Σ
is the variance-covariance matrix of the simple model (3). Let zi, i = 1, . . . n be a random
sample of size n from Z. We estimate µ and Σ with the sample mean z̄ and sample variance-
covariance matrix S, respectively. If we denote the estimator of θ as θ̂ = (â, b̂, ĉ, σ̂x, σ̂ϵm , σ̂ϵy ),
then â, b̂, and ĉ can be expressed as functions of S. Specifically, let

S =

 sxx smx syx

smx smm sym

syx sym syy

 , (9)

then,
â = (sxx)−1smx,
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(
ĉ

b̂

)
=
(

sxx smx

smx smm

)−1(
syx

sym

)
.

The estimators σ̂x, σ̂ϵm , and σ̂ϵy can be obtained naturally using residual sum of squares
based on â, b̂, and ĉ.
Now we estimate the variance-covariance matrix of θ̂. To this end, one can first esti-
mate the variance-covariance matrix of S, then apply the delta method (Casella and Berger
2002). Let η = (µ′, σ′)′, where σ = vec(Σ) is a vector that stacks the columns of Σ
while omitting the elements above the diagonal. For the simple mediation model (3), σ =
(σxx, σmx, σyx, σmm, σym, σyy)′. Denote η̂ = (z̄′, vec(S)′)′. Under the mild assumption that
Z has finite fourth-order moments, Zu and Yuan (2010) established the following asymptotic
normality for η̂:

√
n(η̂ − η) → N(0, ΩSW ) in distribution as n → ∞, (10)

where ΩSW is a sandwich-type variance-covariance matrix:

ΩSW := A−1B(A′)−1 with A = −L̈(η) and B = L̇′(η)L̇(η).

Here L(η) is the log-likelihood function, and L̇ and L̈ are the first derivative vector and second
derivative matrix of L, respectively. ΩSW can be consistently estimated by

Ω̂SW = Â−1B̂(Â′)−1 with Â = − 1
n

n∑
i=1

L̈i(η̂) and B̂ = 1
n

n∑
i=1

L̇′
i(η̂)L̇i(η̂), (11)

where Li, L̇i, and L̈i are the analogues of L, L̇, and L̈, respectively, but for the ith individual.
The second step is to estimate the variance-covariance of θ̂. Since θ̂ is a function of s = vec(S),
we may write it as

θ̂ = h(S).

If ΩSW is partitioned into blocks involving µ and σ, that is,

ΩSW =
(

Ωµµ′ Ωµσ′

Ωσµ′ Ωσσ′

)
,

then the delta method gives that
√

n(θ̂ − θ) → N(0, Ωθ) in distribution as n → ∞,

where Ωθ can be estimated by
Ω̂θ = ḣ(s)Ω̂σσ′ ḣ′(s). (12)

Here Ω̂σσ′ is an appropriate estimator of Ωσσ′ . Furthermore, the standard error of the
mediation effect can be estimated using the delta method since the mediation effect is a
smooth function of θ.

Robust Huber-type method

bmemLavaan also implments a robust M-estimators that can be used in situations where
outliers are present or the data distributions have long tails in real data(Yuan and Zhang
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2012). The key idea is to assign a weight to each observation according to its position in
the data so that extreme cases have relatively smaller weights in estimating the mediation
models.
For the robust sandwich-type standard error based on MLEs, each case is assigned a weight
of 1.0. In this robust procedure, the position of each case is measured by the Mahalanobis
distance defined as

d2(zi, µ, Σ) = (zi − µ)′Σ−1(zi − µ).

Let u1(d) and u2(d) be non-negative weight functions, which are monotonically decreasing in
d. In Maronna (1976), robust M-estimators of µ and Σ are defined as

µ̂ =
∑n

i=1 u1{d(zi, µ̂, Σ̂)}zi∑n
i=1 u1{d(zi, µ̂, Σ̂)}

(13)

and
Σ̂ = 1

n

n∑
i=1

u2{d(zi, µ̂, Σ̂)}(zi − µ̂)(zi − µ̂)′, (14)

respectively, where u1{d(zi, µ̂, Σ̂)} is the weight for estimating µ and u2{d(zi, µ̂, Σ̂)} is the
weight for estimating Σ. In the package bmemLavaan, we consider using the well-known
Huber-type weight, which is widely used in the robust literature (Huber 1981; Tyler 1983;
Wilcox 2011; Yuan and Bentler 1998; Yuan et al. 2000). The Huber-type weight is given as

u1(d) =
{

1 if d ≤ r,
r/d if d > r,

and u2(d) = u2
1(d)/τ,

where r2 is the upper κ-quantile of the χ2 distribution with p degrees of freedom, p is the
total number of observed random variables (e.g., p = 3 in the simple mediation model (3)), κ
is a prespecified proportion of cases one wants to downweight, and τ is a constant determined
by κ such that Σ̂ is unbiased for Σ.
The explicit expressions (13) and (14) provide an iterative algorithm for approximating µ̂
and Σ̂. That is, after the tth iteration, µ̂ and Σ̂ can be updated as

µ̂(t+1) =
n∑

i=1
u1
{

d
(
zi, µ̂(t), Σ̂(t)

)}
zi/

n∑
i=1

u1
{

d
(
zi, µ̂(t), Σ̂(t)

)}
and

Σ̂(t+1) =
n∑

i=1
u2
{

d
(
zi, µ̂(t+1), Σ̂(t)

)}(
zi − µ̂(t+1)

) (
zi − µ̂(t+1)

)′
/n,

respectively. The algorithm is stopped if the change of (µ, Σ) between two consecutive iter-
ations is small enough or a given maximum number of iterations is reached.
Among the three methods for handling non-normal data, the bootstrap method focuses on
drawing samples from the empirical data. The estimations of µ and Σ are just sample mean
and sample variance-covariance matrix from the original data sample, respectively. However,
bootstrap method is a nonparametric method, which has no distribution assumptions, so
robust estimations of the parameters’ standard errors are achieved. Then hypothesis testing
can be done based on the bootstrap robust distribution. The robust sandwich-type method
focuses on the better estimation of parameters’ standard errors. The estimations of µ and Σ
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are also the same but the standard errors of model parameters have robust estimations. Then
z-test is adopted to conduct hypothesis testing. The robust Huber-type method focus on the
re-weighting of samples. Thus, µ and Σ as well as the standard errors of model parameters
all have robust estimations.

2.5. Statistical power analysis

The package bmemLavaan can also be used for statistical power analysis based on Monte
Carlo simulation. In the power analysis, multivariate data are generated according to a
prespecified model and a given sample size by default. The empirical power of a mediation
effect is calculated based on a large number of generated datasets and a specified significance
level.
The procedure of power analysis is as follows. First, multivariate data are generated according
to the prespecified mediation model and the population parameter values given the sample
size n. Second, model parameters are estimated and CI are constructed based on the methods
described in Section 2.4. Three types of CIs, namely, normal CI, robust Huber-type CI, and
bootstrap CI can be constructed with the chosen significance level α. Third, significance
tests are conducted based on the constructed CIs. Specifically, take the mediation effect as
an example, if its CI contains 0, then the mediation effect is not significant in this simulation,
otherwise, significant. Fourth, repeat the above three steps R times. Assume there are r times
that the mediation effect is significant. Then the power for detecting the mediation effect is
estimated by r/R. And the estimate of the standard error for the power is

√
r(R − r)/R3.

This is a classic Monte Carlo simulation process. The bias of parameter estimation and the
empirical coverage probability can be calculated during the above process, despite they are
the focus of power analysis. Specifically, the empirical coverage probability is calculated as the
rate that the constructed CI covers the population value. Generally speaking, If the bias of
parameter estimation is small and the empirical coverage probability is clos to the confidence
level 1 − α, then the calculated power can be trusted. Particularly, the package allows the
generation of multivariate non-normal data through the Vale and Maurelli (1983) method to
evaluate statistical power when non-normal data exist. Technical details for power analysis
used in the package can be found in (Zhang 2014).

3. Implementation
We implemented the methods discussed in Section 2 in our R package bmemLavaan, which
uses the R package lavaan (Rosseel 2012) for model specification. bmemLavaan can handle
missing data and non-normal data in mediation analysis, as detailed in Section 2.3 and 2.4.
The package consists of two main functions, namely bmem() for parameter estimation and
hypothesis testing and power.bmem() for power analysis. We illustrate how to use the syntax
of the package in this section using the simple mediation model here shown in Figure 2 and
more complex examples will be provided in Section 4.

3.1. Data used for illustration

Data used in the example were from 76 families on mothers’ education level (ME), home en-
vironment (HE), children’s mathematical achievement (MATH) and reading recognition ability,
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a subset of data from the National Longitudinal Survey of Youth study (Center for Human
Resource Research 2009). In this example, the purpose is to investigate whether HE mediates
the relationship between ME and MATH. The diagram of the model is given in Figure 2.

Figure 2: A simple mediation model example. HE, home environment; ME, mother’s education;
MATH, children’s mathematical achievement (Zhang and Wang 2013a).

Here we start with loading loading the bmemLavaan package:

R> library("bmemLavaan")

3.2. Function bmem() for model fitting

The function bmem() is used to estimate model parameters and mediation effects. The basic
arguments of bmem() are summarized in Table 1. The main arguments of bmem() include
data, model, method, and ci. The R code for the mediation model depicted in Figure 2 is as
follows:

R> fit <- bmem(data = data_1, model = model1, v = 1:3, method = "list",
+ ci = "bc", boot = 1000, parallel = TRUE, ncore = 8)

Here, data_1 is the R object for the dataset described in Section 3.1. The argument model
specifies the mediation model to be estimated, which can be constructed using the syntax of
R package lavaan. For example, the R code for the simple mediation model in Figure 2 is
given below.

R> model1 <- '
+ HE ~ a * ME
+ MATH ~ b * HE + c * ME
+ ME ~~ s1 * ME
+ HE ~~ s2 * HE
+ MATH ~~ s3 * MATH
+ ind := a * b'

Here, the regression models, variance and covariance, and mediation effect are specified using
“~”, “~~”, and “:=”, respectively. The argument method specifies the method for handling
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Parameter Description Canonical Remark
representation

data dataset A dataframe Should be specified
model Mediation model Lavaan model Should be specified

specification by users
v column IDs of data Integer[nvar] Default: 1:ncol(data)
method Specify a method for Character Default: "tsml"

missing data problem
ci Type of CIs Character Default: "bc"
cl Confidence level of CI Double[1] Default: 0.95
boot Number of bootstrap Integer[1] Default: 1000

replicates
robust Whether use robust Logical Default: FALSE, otherwise:

Huber-type method TRUE
varphi Percent of data to be Double[1] Default: 0.1

downweighted
parallel Whether use Logical Default: FALSE, otherwise:

parallel computing TRUE
ncore Number of cores used Integer[1] Set ncore > 1 if

parallel is not FALSE

Table 1: Main arguments for the function bmem(). Here nvar is the number of variables.

missing data with the options including "list" for listwise deletion, "pair" for pairwise
deletion, "mi" for multiple imputation, or "tsml" for two-stage ML as described in Section
2.3),
The argument ci specifies the bootstrap method for constructing CIs of model parameters,
(i.e., "norm" for normal bootstrap CI, "perc" for percentile bootstrap CI, "bc" for bias-
corrected bootstrap CI, or "bca" for ias-corrected and accelerate bootstrap CI as described
in Section 2.2). In bmem(), parallel computing is allowed by setting the argument parallel
as TRUE and ncore as an integer value greater than 1.
The default value of the argument robust is FALSE, which results in parameter estimates
and their standard errors based on normal distribution assumption. Alternatively, one can
specify robust as TRUE, which is highly recommended for non-normal data, as it returns robust
parameter estimates and their standard errors based on the Huber-type method. When the
robust method is used, one can change the downweigting rate using the argument varphi
which has a default value 0.1.
The results from an analysis can be summarized in a table using the function summary(),
which is a generic function. The first part of the output includes the basic information for
model fitting, such as missing data handling method(Estimate method), sample size, the
number of bootstraps and the number of successfully converged bootstraps, and the type of
confidence interval. The second part includes values of fitting statistics for mediation model
that can be used to evaluate the model fit. The third part includes estimation results of
model parameters, i.e., point estimates, standard errors, and CIs. For example, the results
from the previous analysis results are summarized as follows: the dataset has 76 subjects
and the listwise deletion method was used to deal with the missing data problem. There are
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1000 requested bootstraps in this mediation analysis and they all are successful. As for the
estimation results, from the CIs we can see, the mediation effect is significant and positive,
which means home environment indeed mediates the effect of mothers’ education level on
children’s mathematical achievement.

R> summary(fit)

Estimate method: listwise deletion
Sample size: 76
Number of request bootstrap draws: 1000
Number of successful bootstrap draws: 1000
Type of confidence interva: bc

Values of statistics:

Value SE 2.5% 97.5%
chisq 0.000 0.000 0.000 0.000
GFI 1.000 0.000 1.000 1.000
AGFI 1.000 0.000 1.000 1.000
RMSEA 0.000 0.000 0.000 0.000
NFI 1.000 0.000 1.000 1.000
NNFI 1.000 0.000 1.000 1.000
CFI 1.000 0.000 1.000 1.000
BIC 1055.358 24.963 1015.474 1106.884
SRMR 0.000 0.000 0.000 0.000

Estimation of parameters:

Estimate SE 2.5% 97.5%
Regressions:

HE ~
ME (a) 0.312 0.106 0.128 0.546

MATH ~
HE (b) 0.629 0.310 0.094 1.265
ME (c) 0.888 0.318 0.222 1.473

Variances:
ME (s1) 3.195 0.720 2.120 5.000
HE (s2) 2.436 0.456 1.658 3.351
MATH (s3) 19.665 3.913 13.204 28.514

Defined parameters:
a*b (ind) 0.196 0.116 0.034 0.509
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3.3. Function power.bmem() for power analysis

Power analysis can be conducted via the function power.bmem() based on various CI types
(i.e., normal, bootstrap, and robust Huber-type CIs). The basic arguments of power.bmem()
are summarized in Table 2.

Parameter Description Canonical Remark
representation

model Mediation model Lavaan model Should be specified
specification by users

method Specify a CI method Character Default: "normal"
nobs Sample size Integer[1] Default: 100
nrep Number of Monte Carlo Integer[1] Default: 1000

replications
nboot Number of bootstrap Integer[1] Default: 1000

replicates
ci Obtain bootstrap CIs’ Character Default: "perc"

method
parallel Whether use Logical Default: FALSE, otherwise:

parallel computing TRUE
ncore Number of cores used Integer[1] Set ncore > 1 if

parallel is not FALSE
skewness Skewness of Double[nvar] Default: NULL

observed variables
kurtosis Kurtosis of Double[nvar] Default: NULL

observed variables
ovnames Observed variable names Character[nvar] Match the order of skewness

and kurtosis parameters

Table 2: Main arguments for the function power.bmem(). Here nvar is the number of
variables.

Here is the power analysis R code for the model depicted in Figure 2 based on the norm CI.

R> model2 <- '
+ MATH ~ c * ME + start(0) * ME + b * HE + start(0.39) * HE
+ HE ~ a * ME + start(0.39) * ME
+ ME ~~ s1 * ME + start(1) * ME
+ HE ~~ s2 * HE + start(1) * HE
+ MATH ~~ s3 * MATH + start(1) * MATH
+ ind:= a * b'
R> power.result = power.bmem(model = model2, method = "normal", nobs = 76,
+ nrep = 1000, parallel = TRUE, skewness = c(0, 0, 1.3),
+ kurtosis = c(0, 0, 10), ovnames = c("ME", "HE", "MATH"), ncore = 8)

In the model, the population parameters are known a priori and should be incorporated in
the model specification. For example, a is known to be 0.39, and is specified using “HE ~ a
* ME + start(0.39) * ME”. The population parameter values can be determined from pilot
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studies or the previous literature. The given population parameter values are be used for
data simulation and also serve as starting values for model estimation.
The default value of the argument method is "normal", which corresponds to the normal CI,
while the other two candidates are "boot" and "robust" corresponding to the bootstrap CI
and the robust sandwich-type CI, respectively. If bootstrap CI is used (method="boot"), two
additional arguments nboot for the number of bootstraps and ci for the type of CI can be
specified. The argument ci specifies the type of bootstrap CI. The default value of ci returns
percentile bootstrap CI (ci="perc") while the alternative value returns BC bootstrap CI
(ci="bc"). Power analysis can be conducted to take into consideration of non-normal data
where the skewness and kurtosis of the observed variables can be specified by arguments
skewness and kurtosis. If the observed variable names ovnames is provided, they should be
provided to match the order of the skewness and kurtosis statistics.
Power analysis results can be summarized in a table using the function summary(). The
main body of the result table includes the following. The first column True lists the true
population parameter values in the argument model. The second column Estimate presents
the average parameter estimates across all simulation replications. The third column MSE is
the average bootstrap standard error. The fourth column SD is the standard deviation of
the parameter estimates across all replications. The fifth column Power gives the power for
testing whether a parameter is significantly nonzero. The sixth column Power.se provides
the standard error of the estimated statistical power. The last column Coverage presents the
empirical coverage probability of the CIs across all replications. The power for testing the
mediation effect is listed at the bottom of the table entitled Indirect/Mediation Effects,
which is about 0.866 in the present example.

R> summary(power.result)

Basic information:

Esimation method ML
Standard error standard
Number of requested replications 1000
Number of successful replications 1000

True Estimate MSE SD Power Power.se Coverage
Regressions:
MATH ~
ME (c) 0.000 -0.000 0.121 0.121 0.050 0.007 0.950
HE (b) 0.390 0.393 0.113 0.133 0.927 0.008 0.906
HE ~
ME (a) 0.390 0.387 0.115 0.117 0.912 0.009 0.944

Variances:
ME 1.000 0.980 0.159 0.152 1.000 0.000 0.924
HE 1.000 0.969 0.157 0.169 1.000 0.000 0.882
MATH 1.000 0.952 0.154 0.373 1.000 0.000 0.595
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Indirect/Mediation effects:
ab 0.152 0.152 0.064 0.071 0.717 0.014 0.901

Moreover, the function power.curve() can graphically display the power trend against the
sample size, which can be used to determine the sample size required for a given power through
interpolation. This function has the same arguments as the function power.bmem(), but the
argument nobs should be a vector of sample sizes corresponding to the x-axis of the power
curve. An example of the power curve can be found in Section 4.5.

4. Applications
We now use several examples to further demonstrate the use of the bmemLavann package.

4.1. A simple mediation model

We first analyze the Pollack dataset (Pollack, Vanepps, and Hayes 2012) using a simple me-
diation model. The raw data for this example are available from the R package processR. The
Pollack dataset consists of 262 observations on 7 variables. We want to investigate whether
the effect of economic stress (estress) on entrepreneurs’ withdrawal intentions (withdraw)
is mediated through the entrepreneurs’ depressed affect (affect) (see Figure 3).

Figure 3: The simple mediation model of Pollack dataset.

Using this example, we compare the default method in function bmem() (the normal distri-
bution based method) and the robust Huber-type method with the percentile bootstrap CI.
The R code for the analysis given below and the estimation results are presented in Table 3.

R> model_s <- '
+ affect ~ a * estress
+ withdraw ~ b * affect + c * estress
+ estress ~~ s1 * estress
+ affect ~~ s2 * affect
+ withdraw ~~ s3 * withdraw
+ ind := a * b'
R> library("processR")
R> data("estress") # estress is raw data of Pollack
R> fit_n <- bmem(data = estress, model = model_s, v = c(2,3,4), ci = 'perc',
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+ boot = 1000, parallel = TRUE, ncore = 8) # default method
R> summary(fit_n)
R> fit_r <- bmem(data = estress, model = model_s, v = c(2,3,4), ci='perc',
+ boot = 1000, robust = TRUE, varphi = 0.1, parallel = TRUE, ncore = 8)
R> # robust method
R> summary(fit_r)

Default Robust
Parameter EST SD 95% CI EST SD 95% CI

a 0.173 0.041 (0.093, 0.250) 0.162 0.028 (0.111, 0.218)
b 0.769 0.138 (0.486, 1.016) 0.899 0.135 (0.659, 1.176)
c -0.077 0.056 (-0.183, 0.034) -0.084 0.054 (-0.199, 0.014)
s1 2.019 0.154 (1.695, 2.307) 1.968 0.170 (1.629, 2.279)
s2 0.461 0.081 (0.316, 0.626) 0.297 0.046 (0.212, 0.393)
s3 1.269 0.098 (1.061, 1.439) 1.216 0.102 (1.004, 1.392)

a × b 0.133 0.033 (0.070, 0.202) 0.146 0.032 (0.089, 0.215)

Table 3: Estimates (percentile bootstrap CIs) of parameters in Figure 3. Default, the default
method in function bmem(); Robust, robust Huber-type method. The percentile bootstrap
CIs were constructed based on 1000 bootstraps.

There are some differences in the point estimates and CIs of these two methods. Take the
variance of affect (s2) as an example, the estimate of the default method is clearly larger
than the estimate of the robust method, and the corresponding CIs have little overlap. How-
ever, there are no difference in terms of the significance of the results. The results of both
methods show that the mediation effect (a×b) is statistically significant and positive, demon-
strating that the entrepreneurs’ depressed affect mediated the effect of economic stress on
entrepreneurs’ withdrawal intentions.

4.2. A multiple-mediator model

To show the capacity of the package bmemLavaan for dealing with complex mediation models
and missing data problems, we fit a multiple-mediator mediation model to the Tal_Or
dataset analyzed in Tal-Or, Cohen, Tsfati, and Gunther (2010). The Tal_Or data are
available from the R package psych, which consist of 123 observations on 6 variables. We
are interested in whether the effect of a salience manipulation (cond) on the intention to
buy a product (reaction) is mediated through the presumed media influence (pmi) and the
importance of the message (import). The remaining variables age and gender are used as
covariates. The mediation model is depicted in Figure 4.
Since the Tal_Or dataset has no missing data, we generate missing data with a MAR
mechanism. The missing data probabilities of mediators (pmi and import) and outcome
(reaction) depend only on the covariate age. Specifically, pmi and import are chosen to be
missing independently with probability 0.5 if and only if age is larger than its 70% quantile,
and reaction was chosen to be missing with probability 0.5 if and only if age is smaller than
its 20% quantile. As a result, the missing rates for the variables pmi, import, and reaction
are about 16%, 12%, and 8%, respectively.
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Figure 4: The multiple-mediator model of Tal_Or dataset.

We apply the four missing data handling methods to the resulting “missing” version of
Tal_Or data (denoted by Tal_Or_miss) to demonstrate the capacity of the package
bmemLavaan for dealing with missing data. The analysis results of the complete Tal_Or
data are used as a baseline for comparison. The R code for the analysis is given below. All
results based on 1000 bootstraps are presented in Table 4.

R> library("psych")
R> model_m <- '
+ pmi ~ a * cond
+ import ~ d * cond
+ reaction ~ b * pmi + e * import + c * cond + f * age + g * gender
+ cond ~~ s1 * cond
+ pmi ~~ s2 * pmi
+ import ~~ s3 * import
+ reaction ~~ s4 * reaction
+ age ~~ s5 * age
+ gender ~~ s6 * gender
+ ind1 := a * b
+ ind2 := d * e
+ total := a * b + d * e'
R> data("Tal_Or")
R> dataset2 <- Tal_Or_miss # the missing version of Tal_Or dataset
R> fit_2 <- bmem(data = Tal_Or, model = model_m, ci = 'bc',
+ boot = 1000, parallel = TRUE, ncore = 8) # baseline
R> summary(fit_2)
R> fit_2_l <- bmem(data = dataset2, model = model_m, method = 'list',
+ ci = 'bc', boot = 1000, parallel = TRUE, ncore = 8) # LD method
R> summary(fit_2_l)
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R> fit_2_p <- bmem(data = dataset2, model = model_m, method = 'pair',
+ ci = 'bc', boot = 1000, parallel = TRUE, ncore = 8) # PD method
R> summary(fit_2_p)
R> fit_2_m <- bmem(data = dataset2, model = model1_m, m = 40,
+ method = 'mi', ci = 'bc', boot = 1000, parallel = TRUE, ncore = 8)
R> # MI method with 40 imputations
R> summary(fit_2_m)
R> fit_2_t <- bmem(data = dataset2, model = model_m, method = 'tsml',
+ ci = 'bc', boot = 1000, parallel = TRUE, ncore = 8) # TS-ML method
R> summary(fit_2_t)

The results from the four missing data methods share some similarities but also show differ-
ences. We focused on the comparisions on the results of parameters of interest, which are
the direct effect (c) and mediation effects (a × b, d × e, and a × b + d × e). Firstly, in terms
of the parameter estimates, the biases, difference from the complete data, of MI and TS-ML
methods are much smaller than the biases of LD and PD methods. Specifically, the estima-
tion biases of the direct effect are 0.161, 0.175, 0.028, and 0.026 by LD, PD, MI, and TS-ML
methods, respectively. The estimation biases of the total mediation effect are 0.046, 0.073,
0.019, 0.022 by LD, PD, MI, and TS-ML methods, respectively. Secondly, in terms of 95%
CIs, because of the impact of estimation biases, the 95% CIs of MI and TS-ML methods is
closer to the results of baseline than the 95% CIs of LD and PD methods in most cases. There
are some exceptions where LD or PD method outperforms the other methods. For example,
in terms of the mediation effect ind2 (d × e), the 95% CI of PD method is closer to the 95%
CI of baseline than the other three methods because the 95% CI of PD method include the
95% CI of baseline while has the smallest length (0.639, 0.527, 0.560, 0.540 by LD, PD, MI,
and TS-ML methods, respectively). Thirdly, in terms of significance testing, we can conclude
that the direct effect is not significant and the total mediation effect is significant for all four
methods, which is the same as in the baseline analysis. But the mediation effect through pmi
and the mediation effect through import are not significant almost in all four methods, which
are contrary to the conclusions of baseline. In general, MI and TS-ML methods outperform
LD and PD methods in mediation analysis on this missing data problem. However, the com-
puting time of the MI method (91.56s) was about five times that of the other three methods
(about 20s), as about K = 40 multiple imputations were used in the MI method.

4.3. A latent mediation model

In this example, we show how to model a latent mediator. The PoliticalDemocracy dataset
(Bollen 1989) used here is available from the R package Lavaan. The dataset contains 75
observations on 11 variables that are measures of political democracy and industrialization in
developing countries. By design, x1, x2 and x3 represent the gross national product (GNP)
per capital, the inanimate energy consumption per capital, and the percentage of the labor
force in industry in 1960, respectively. They measure the degree of industrialization. y1, y2,
y3 and y4 represent the expert ratings of the freedom of the press, the freedom of political
opposition, the fairness of elections, and the effectiveness of the elected legislature in 1960,
respectively. They measure the political democracy in 1960. y5, y6, y7 and y8 represent the
same index as y1, y2, y3 and y4 but in 1965. They measure the political democracy in 1965.
We are interested in whether the effect of the degree of industrialization in 1960 (ind60) on
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the political democracy in 1965 (dem65) is mediated through the political democracy in 1965
(dem60) in developing countries. The mediation model is depicted in Figure 5.

The corresponding lavaan syntax for specifying this model is as
follows:

model <- ' 
  # measurement model 
    ind60 =~ x1 + x2 + x3 
    dem60 =~ y1 + y2 + y3 + y4 
    dem65 =~ y5 + y6 + y7 + y8 
  # regressions 
    dem60 ~ ind60 
    dem65 ~ ind60 + dem60 
  # residual correlations 
    y1 ~~ y5 
    y2 ~~ y4 + y6 
    y3 ~~ y7 
    y4 ~~ y8 
    y6 ~~ y8 
'

In this example, we use three different formula types: latent
variabele definitions (using the =~  operator), regression formulas
(using the ~  operator), and (co)variance formulas (using the ~~
operator). The regression formulas are similar to ordinary formulas
in R. The (co)variance formulas typically have the following form:

variable ~~ variable 

a

b
c

d

e

f

d

e

f

1.0

1.0

 1.0 g h

Figure 5: The latent mediator model of PoliticalDemocracy dataset.

We consider the percentile bootstrap CI with 1000 bootstraps in this example. For compar-
ison, we also conduct the mediation analysis without bootstrap by using sem() function in
Lavaan package, which by default the uses the delta method to estimate the standard error
of the indirect effect and utilizes the z-test for hypothesis testing (also known as Sobel test
(Sobel 1982, p. 298)). Note that lavaan can also conduct bootstrap analysis directly. The R
code used here is given below and the results are presented in Table 5.

R> library("lavaan")
R> data("PoliticalDemocracy")
R> model_l <- '
+ ind60 =~ x1 + g * x2 + h * x3
+ dem60 =~ y1 + d * y2 + e * y3 + f * y4
+ dem65 =~ y5 + d * y6 + e * y7 + f * y8
+ dem60 ~ a * ind60
+ dem65 ~ c * ind60 + b * dem60
+ y1 ~~ y5
+ y2 ~~ y4 + y6
+ y3 ~~ y7
+ y4 ~~ y8
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+ y6 ~~ y8
+ ind := a * b'
R> fit_b <- bmem(data = PoliticalDemocracy, model = model_l, ci = 'perc',
+ boot = 1000, parallel = TRUE, ncore = 8) # analysis with bootstrap
R> summary(fit_b)
R> fit_s <- sem(model_l, data = PoliticalDemocracy)
P> # analysis without bootstrap
R> summary(fit_s, fit.measures = TRUE)

Bootstrap Without bootstrap
Parameter EST SE 95% CI EST SE z-value/p-value

a 1.471 0.373 (0.734, 2.200) 1.471 0.392 3.750/0.000
b 0.865 0.069 (0.738, 1.033) 0.865 0.075 11.554/0.000
c 0.600 0.242 (0.150, 1.118) 0.600 0.226 2.661/0.008
d 1.191 0.149 (0.928, 1.493) 1.191 0.139 8.551/0.000
e 1.175 0.130 (0.972, 1.473) 1.175 0.120 9.775/0.000
f 1.251 0.143 (1.007, 1.591) 1.251 0.117 10.712/0.000
g 2.180 0.149 (1.924, 2.520) 2.180 0.138 15.751/0.000
h 1.818 0.146 (1.546, 2.105) 1.818 0.152 11.971/0.000

a × b 1.273 0.331 (0.660, 1.958) 1.273 0.358 3.559/0.000

Table 5: Estimates results of parameters in Figure 5. Bootstrap, mediation analysis with
bootstrap method using bmem() function; Without bootstrap, mediation analysis with boot-
strap method using sem() function. The percentile bootstrap CIs were constructed based on
1000 bootstrap samples.

The 95% CI in the output of bmem() function and the p-value in the output of the sem()
function all show that the indirect effect (a × b) is significant, demonstrating that dem60
indeed mediated the effect of ind60 on dem65. However, in terms of parameters of interest
(a, b, a×b), the estimated standard errors of analysis with bootstrap method are smaller than
the analysis without bootstrap.

4.4. Power analysis for a simple mediation model

bmemLavaan can also be used to conduct power analysis for sample size planning for me-
diation analysis. To demonstrate its usage, we conducted a power analysis for the model
described in Section 4.1. Power analysis can be conducted based on a selected CI (i.e., normal
CI, robust CI, and bootstrap CI) that corresponds to a testing procedure for the mediation
effect (i.e., a × b). In the following example code, we obtain the power when the sample size
is 262, the same as in the real data. The population parameter values are also set the same
as in the results of the real data analysis. For the bootstrap CI, 1,000 bootstraps are used.
The power is calculated based on 1000 simulated datasets.

R> model_s_p <- '
+ affect ~ a * estress + start(0.173) * estress
+ withdraw ~ b * affect + start(0.769) * affect + c * estress +
+ start(-0.077) * estress
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+ estress ~~ s1 * estress + start(2.019) * estress
+ affect ~~ s2 * affect + start(0.461) * affect
+ withdraw ~~ s3 * withdraw + start(1.269) * withdraw
+ ind := a * b'
R> power_n_1 <- power.bmem(model = model_s_p, method = "normal", nobs = 262,
+ nrep = 1000, parallel = TRUE, ncore = 8)
R> summary(power_n_1)
R> power_r_1 <- power.bmem(model = model_s_p, method = "robust", nobs = 262,
+ nrep = 1000, parallel = TRUE, ncore = 8)
R> summary(power_r_1)
R> power_b_1 <- power.bmem(model = model_s_p, method = "boot", nobs = 262,
+ nrep = 1000, nboot = 1000, ci = "perc", parallel = TRUE, ncore = 8)
R> summary(power_b_1)

The power analysis results are reported in Table 4.4. Overall, the bootstrap CI based method
is evidently more powerful than the robust CI based method, which, in turn, is more powerful
than the normal CI based method. For example, the powers for testing direct effect of estress
on withdraw (c) are 0.155, 0.184, and 0.189 for the normal, robust, and bootstrap CI based
methods, respectively. However, the bootstrap CI method is much more time consuming than
the other two methods (15.97, 16.77, and 811.19 seconds, respectively).

Normal CI Robust CI Bootstrap CI
Parameter True Bias Power Bias Power Bias Power

a 0.173 0.000 0.941 0.000 0.945 0.000 0.942
b 0.769 0.003 0.976 0.005 0.993 0.009 0.994
c -0.077 0.002 0.155 0.005 0.184 0.000 0.189

a × b 0.133 0.000 0.890 0.001 0.885 0.002 0.958

Table 6: Statistical power analysis for the simple mediation model in Figure 3.

To further understand the time consumed by power analysis, we conduct power analyses with
different numbers of Monte Carlo replications (nrep) and bootstraps (nboot) based on the
simple meidation model in Figure 3. Table 4.4 shows the time on a computer with 16 CPU
cores and 16 GB memory. Clearly, one would expect to use more computing time with a larger
number of replications and boostraps. In practice, we recommend at least 1000 replications
and 1,000 bootstraps.

nrep Normal Robust Bootstrap
100 500 1000

100 14.73 14.15 47.03 186.28 345.08
500 16.15 16.96 184.81 834.43 1633.43
1000 18.87 19.52 352.11 1625.31 3304.32

Table 7: Time consumed to conduct power analyses for the model in Figure 3. The computing
time here is presented in seconds. The first column shows different Monte Carlo replications
(nrep argument). For each value of nrep, power analysis is conducted using 3 different
numbers of bootstraps (nboot argument).
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4.5. Power analysis for a multiple-mediator model
Power analysis can be conducted for more complex mediation models such as the multiple-
mediator model. The following R code calculates the power based on the population model
in 4 when the sample size is 123. The power analysis results are reported in Table 4.5. The
power for testing mediation effects of pmi is 0.415, 0.411, 0.590 from the normal, robust, and
bootstrap CI based methods, respectively.

R> model_m_p <- '
+ pmi ~ a * cond + start(0.477) * cond
+ import ~ d * cond + start(0.627) * cond
+ reaction ~ b * pmi + start(0.392) * pmi + e * import +
+ start(0.334) * import + c * cond + start(0.10) * cond + f * age +
+ start(-0.031) * age + g * gender + start(-0.071) * gender
+ cond ~~ s1 * cond + start(0.249) * cond
+ pmi ~~ s2 * pmi + start(1.675) * pmi
+ import ~~ s3 * import + start(2.893) * import
+ reaction ~~ s4 * reaction + start(1.579) * reaction
+ age ~~ s5 * age + start(33.377) * age
+ gender ~~ s6 * gender + start(0.227) * gender
+ ind1 := a * b
+ ind2 := d * e
+ total := a * b + d * e'
R> power_n_2 <- power.bmem(model = model_m_p, method = "normal", nobs = 123,
+ nrep = 1000, parallel = TRUE, ncore = 8)
R> summary(power_n_2)
R> power_r_2 <- power.bmem(model = model_m_p, method = "robust", nobs = 123,
+ nrep = 1000, parallel = TRUE, ncore = 8)
R> summary(power_r_2)
R> power_b_2 <- power.bmem(model = model_m_p, method = "boot", nobs = 123,
+ nrep = 1000, nboot = 1000, ci = "bc", parallel = TRUE, ncore = 8)
R> summary(power_b_2)

A power curve can be generated with the function power.curve(). We illustrate its usage
by analyzing the mediation effect ind1 (a × b). The R code for the power curve based on
the bootstrap CI is given below. In the function, seq(100, 1000, by=100) specifies a set of
sample sizes from 100 to 1,000 with an interval 100. The generated power curve for ind1 is
shown in Figure 6. Notice that a power curve can be used to obtain an approximate sample
size required for a given power through interpolation. For example, a sample size of about 400
is needed to get a power of 0.95. Note that calculating a power curve can take a significant
amount of time. In this example, it took 42905.00 seconds, about 12 hours in total.

R> power.curve(model = model_m_p, method = "boot", nobs = seq(100, 1000,
+ by=100), nrep = 1000, nboot = 1000, ci = "bc", parallel = TRUE, ncore = 8)

4.6. Power analysis for a latent mediation model
We can also conduct the post-hoc power analysis for the latent mediation model in Figure 5.
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Normal CI Robust CI Bootstrap CI
Parameter True Bias Power Bias Power Bias Power

a 0.477 0.002 0.530 0.013 0.513 0.009 0.535
b 0.392 0.002 0.989 0.001 0.994 0.004 0.990
c 0.100 0.022 0.069 0.006 0.089 0.013 0.085
d 0.627 0.004 0.543 0.016 0.514 0.003 0.534
e 0.334 0.002 0.997 0.001 0.998 0.002 0.999
f -0.031 0.001 0.403 0.000 0.365 0.000 0.355
g -0.071 0.001 0.076 0.004 0.083 0.007 0.065

a × b 0.187 0.001 0.415 0.006 0.411 0.001 0.590
d × e 0.209 0.001 0.452 0.004 0.449 0.002 0.580

a × b + d × e 0.396 0.002 0.766 0.010 0.750 0.002 0.804
Time 18.28 20.28 4295.00

Table 8: Statistical power analysis for the multiple-mediator mediation model in Figure 4.
The last row shows the corresponding methods’ computing time in seconds.
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Figure 6: Power curve for testing the mediation effect ind1 in Example 2. The x-axis is the
sample size and y-axis is the power for testing the mediation effect a × b.

The corresponding R code is presented as follows. The power analysis results are reported in
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Table 4.6. The power for all model parameters are almost 1.0 except for the direct effect c.

R> model_l_p <- '
+ ind60 =~ x1 + g * x2 + start(2.180) * x2 + h * x3 + start(1.818) * x3
+ dem60 =~ y1 + d * y2 + start(1.191) * y2 + e * y3 +
+ start(1.175) * y3 + f * y4 + start(1.251) * y4
+ dem65 =~ y5 + d * y6 + start(1.191) * y6 + e * y7 +
+ start(1.175) * y7 + f * y8 + start(1.251) * y8
+ dem60 ~ a * ind60 + start(1.471) * ind60
+ dem65 ~ c * ind60 + start(0.6) * ind60 + b * dem60 + start(0.865) * dem60
+ y1 ~~ 0.583 * y5
+ y2 ~~ 1.440 * y4 + 2.183 * y6
+ y3 ~~ 0.712 * y7
+ y4 ~~ 0.363 * y8
+ y6 ~~ 1.372 * y8
+ x1 ~~ 0.081 * x1
+ x2 ~~ 0.120 * x2
+ x3 ~~ 0.467 * x3
+ y1 ~~ 1.855 * y1
+ y2 ~~ 7.581 * y2
+ y3 ~~ 4.956 * y3
+ y4 ~~ 3.225 * y4
+ y5 ~~ 2.313 * y5
+ y6 ~~ 4.968 * y6
+ y7 ~~ 3.560 * y7
+ y8 ~~ 3.308 * y8
+ ind := a * b'
R> power_n_3 <- power.bmem(model = model_l_p, method = "normal", nobs = 75,
+ nrep = 1000, parallel = TRUE, ncore = 8)
R> summary(power_n_3)
R> power_r_3 <- power.bmem(model = model_l_p, method = "robust", nobs = 75,
+ nrep = 1000, parallel = TRUE, ncore = 8)
R> summary(power_r_3)
R> power_b_3 <- power.bmem(model = model_l_p, method = "boot", nobs = 75,
+ nrep = 1000, nboot = 1000, ci = "bc", parallel = TRUE, ncore = 8)
R> summary(power_b_3)

5. Summary and Discussion
A new R package bmemLavaan is developed for estimating and testing mediation effects.
The package can be used to obtain point estimates and the association confidence intervals
based on different methods. Furthermore, it can handle missing data and non-normal data.
Specifically, four methods are implemented for handling missing data (i.e., LD, PD, MI, and
TS-ML) and three methods are implemented for handling non-normal data (i.e., bootstrap,
robust method, and robust Huber-type method). It can also conduct statistical power analysis
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Normal CI Robust CI Bootstrap CI
Parameter True Bias Power Bias Power Bias Power

a 1.471 0.008 1.000 0.001 1.000 0.004 1.000
b 0.865 0.045 0.948 0.43 0.960 0.041 0.951
c 0.600 0.081 0.342 0.080 0.342 0.062 0.198
d 1.191 0.002 1.000 0.004 1.000 0.007 1.000
e 1.175 0.001 1.000 0.003 1.000 0.008 1.000
f 1.251 0.006 1.000 0.004 1.000 0.009 1.000
g 2.180 0.001 1.000 0.003 1.000 0.004 1.000
h 1.818 0.001 1.000 0.000 1.000 0.005 1.000

a × b(ind) 1.272 0.076 0.942 0.083 0.953 0.063 0.951
Time 19.86 22.42 5409.53

Table 9: Estimate biases and significance test powers of parameters in Figure 5. The last row
shows the corresponding methods’ computing time in seconds.

for mediation analysis. The input and output of bmemLavaan are based on the widely R
package lavaan, which can greatly reduce the learning curve of the new package.
Although our package bmemLavaan covers a wide range of statistical methods for media-
tion analyses, it can still be improved in the future. First, to handle missing not at random
(MNAR) data, our bmemLavaan package can transform MNAR data into MAR data with
appropriate auxiliary variables using the MI or TS-ML method. But it assumes that the miss-
ingness of data can be explained by the auxiliary variables. When there exists no such auxil-
iary variables, estimation biases in mediation analysis can be large (Zhang and Wang 2013a).
Selection models have been developed to deal with MNAR data in certain circumstances (e.g.,
Best, Spiegelhalter, Thomas, and Brayne 1996). Although it is not straightforward to extend
those selection models to mediation analyses, it deserves investigation in the future. Second,
the methods requiring bootstrap can be very time consuming. In the future, we will extend
time-efficient robust methods (e.g., von Oertzen and Brick 2014) to mediation analyses, and
evaluate their performance. Third, the robust Huber-type method is now only developed for
single group analysis. How to extend the robust Huber-type method to mediation analysis
for multiple group data deserves further investigation. Finally, extensions can be made to
handle other types of data such as categorical data and survival data.
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A. E-step for the EM Algorithm
The E-step of the EM algorithm is to fill in the missing data using their expectations

E(zij |zobs, U (t), S(t)) = z
(t)
ij ; i = 1, ..., N, j = 1, ..., p + 3, (15)

and
E(zijzik|zobs, U (t), S(t)) = z

(t)
ij z

(t)
ik + c

(t)
ijk, (16)

where

z
(t)
ij =

{
zij , if zij is observed
E(zij |zobs, U (t), S(t)), if zij is missing,

(17)

and

c
(t)
ijk =

{
cov(zij , zik|zobs, U (t), S(t)), if both zij and zik are missing
0, otherwise,

(18)

with j, k = 1, 2, ..., p+3 and zobs denoting the observed data. The expectation E(zij |zobs, U (t), S(t))
and covariance cov(zij , zik|zobs, U (t), S(t)) are readily available from the conditional distribu-
tion of the multivariate normal distribution with mean U (t) and covariance S(t).
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