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Abstract

The random-effects or normal-normal hierarchical model is commonly utilized in a
wide range of meta-analysis applications. A Bayesian approach to inference is very at-
tractive in this context, especially when a meta-analysis is based only on few studies. The
bayesmeta R package provides readily accessible tools to perform Bayesian meta-analyses
and generate plots and summaries, without having to worry about computational details.
It allows for flexible prior specification and instant access to the resulting posterior distri-
butions, including prediction and shrinkage estimation, and facilitating for example quick
sensitivity checks. The present paper introduces the underlying theory and showcases its
usage.
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1. Introduction

1.1. Meta-analysis

Evidence commonly comes in separate bits, and not necessarily from a single experiment. In
contemporary science, the careful conduct of systematic reviews of the available evidence from
diverse data sources is an effective and ubiquitously practiced means of compiling relevant
information. In this context, meta-analyses allow for the formal, mathematical combination
of information to merge data from individual investigations to a joint result. Along with
qualitative, often informal assessment and evaluation of the present evidence, meta-analytic
methods have become a powerful tool to guide objective decision-making (Chalmers, Hedges,
and Cooper 2002; Liberati et al. 2009; Hedges and Olkin 1985; Hartung, Knapp, and Sinha
2008; Borenstein, Hedges, Higgins, and Rothstein 2009). Applications of meta-analytic meth-
ods span such diverse fields as agriculture, astronomy, biology, ecology, education, health
research, medicine, psychology, and many more (Chalmers et al. 2002).
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When empirical data from separate experiments are to be combined, one usually needs to
be concerned about the straight one-to-one comparability of the provided results. There
may be obvious or concealed sources of heterogeneity between different studies, originating,
e.g., from differences in the selection and treatment of subjects, or in the exact definition of
outcomes. Residual heterogeneity may be anticipated in the modeling stage and considered in
the estimation process; a common approach is to include an additional variance component
to account for between-study variability. On the technical side, the consideration of such
a heterogeneity parameter leads to a random-effects model rather than a fixed-effect model
(Hedges and Olkin 1985; Hartung et al. 2008; Borenstein et al. 2009).

Inclusion of a non-zero heterogeneity will generally lead to more conservative results, as
opposed to a “naive” merging of the given data without consideration of potentially hetero-
geneous data sources.

1.2. The normal-normal hierarchical model (NNHM)

A wide range of problems may be approached using the normal-normal hierarchical model
(NNHM); this generic random-effects model is applicable when the estimates to be combined
are given along with their uncertainties (standard errors) on a real-valued scale. Many prob-
lems are commonly solved this way, often after a transformation stage to re-formulate the
problem on an appropriate scale. For example, binary data given in terms of contingency
tables are routinely expressed in terms of logarithmic odds ratios (and associated standard
errors), which are then readily processed via the NNHM.

In the NNHM, measurements and standard errors are modeled via normal distributions,
using means and their standard errors as sufficient statistics, while on a second hierarchy
level the heterogeneity is modeled as an additive normal variance component as well. The
model then has two parameters, the (real-valued) effect, and the (positive) heterogeneity. If
the heterogeneity is zero, then the model reduces to the special case of a fixed-effect model
(Hedges and Olkin 1985; Hartung et al. 2008; Higgins and Green 2011; Borenstein et al.
2009). The model and terminology are described in detail in Section 2.1. The bayesmeta

(Röver 2020) R package is based on this simple yet ubiquitous form of the NNHM.

1.3. Analysis within the NNHM framework

The Bayesian solution

The bayesmeta package implements a Bayesian approach to inference. Bayesian modeling
has previously been advocated and used in the meta-analysis context (Smith, Spiegelhal-
ter, and Thomas 1995; Sutton and Abrams 2001; Spiegelhalter 2004; Spiegelhalter, Abrams,
and Myles 2004; Higgins, Thompson, and Spiegelhalter 2009; Lunn, Barrett, Sweeting, and
Thompson 2013); the difference to the more common “frequentist” methods is that the prob-
lem is approached by expressing states of information via probability distributions, where
the consideration of new data then constitutes an update to a previous information state
(Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin 2014; Jaynes 2003; Spiegelhalter, Myles,
Jones, and Abrams 1999). A Bayesian analysis allows (and in fact requires) the specification
of prior information, expressing the a priori knowledge, before data are taken into account.
Technically this means the definition of a probability distribution, the prior distribution, over



Journal of Statistical Software 3

the unknowns in the statistical model. Once model and prior are specified, the results of a
Bayesian analysis are uniquely determined; however, implementing the necessary computa-
tions to derive these in practice may still be tricky.

While analysis results will of course depend on the prior setting, the range of reasonable
specifications however is usually limited. In the meta-analysis context, non-informative or
weakly informative priors for the effect are readily defined, if required. For the between-study
heterogeneity an informative specification is often appropriate, especially when only a small
number of studies is involved. Interestingly, the number of studies combined in the meta-
analyses archived in the Cochrane Library is reported by both Davey, Turner, Clarke, and
Higgins (2011) and Kontopantelis, Springate, and Reeves (2013) with a median of 3 and a
75% quantile of 6, so that in practice a majority of analyses (including subgroup analyses and
secondary outcomes) here is based on as few as 2–3 studies; such cases may not be as unusual
as one might expect, at least in medical contexts. Typical meta-analysis sizes may vary across
fields; for example, the data collected by Van Erp, Verhagen, Grasman, and Wagenmakers
(2017) indicate a median number of 12 and first and third quartiles of 5 and 33 studies,
respectively, for meta-analyses published in the Psychological Bulletin. Standard options for
priors are available here, confining the prior probability within reasonable ranges (Spiegel-
halter et al. 2004). Long-run properties of Bayesian methods have also been compared with
common frequentist approaches by Friede, Röver, Wandel, and Neuenschwander (2017a,b),
with a focus on the common case of very few studies.

Bayesian methods commonly are computationally more demanding than other methods; usu-
ally these require the determination of high-dimensional integrals. In some (usually simpler)
cases, the necessary integrals can be solved analytically, but it was mostly with the advent of
modern computers and especially the development of Markov chain Monte Carlo (MCMC)
methods that Bayesian analyses have become more generally tractable (Metropolis and Ulam
1949; Gilks, Richardson, and Spiegelhalter 1996). In the present case of random-effects meta-
analysis within the NNHM, where only two unknown parameters are to be inferred, computa-
tions may be simplified by utilizing numerical integration or importance resampling (Turner,
Jackson, Wei, Thompson, and Higgins 2015), both of which require relatively little manual
tweaking in order to get them to work. It turns out that computations may be done partly
analytically and partly numerically, offering another approach to simplify calculations via
the direct algorithm (Röver and Friede 2017). Utilizing this method, the bayesmeta pack-
age provides direct access to quasi-analytical posterior distributions without having to worry
about setup, diagnosis or post-processing of MCMC algorithms. The present paper describes
some of the methods along with the usage of the bayesmeta package.

Other common approaches

A frequentist approach to inference is largely focused on long-run average operating charac-
teristics of estimators. In this framework, meta-analysis using the NNHM is most commonly
done in two stages, where first the heterogeneity parameter is estimated, and then the effect
estimate is derived based on the heterogeneity estimate. The choice of a heterogeneity es-
timator poses a problem on its own; a host of different heterogeneity estimators have been
described, for a comprehensive summary of the most common ones see, e.g., Veroniki et al.
(2016). A common problem with such estimators of the heterogeneity variance component
is that they frequently turn out as zero, effectively resulting in a fixed-effect model, which is
usually seen as an undesirable feature. Within this context, Chung, Rabe-Hesketh, and Choi
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(2013) proposed a penalized likelihood approach, utilizing a Gamma type “prior” penalty
term in order to guarantee non-zero heterogeneity estimates.

The treatment and estimation of heterogeneity in practice has been investigated, e.g., by Pul-
lenayegum (2011), Turner, Davey, Clarke, Thompson, and Higgins (2012) and Kontopantelis
et al. (2013). When looking at large numbers of meta-analyses published by the Cochrane Col-
laboration, the majority (57%) of heterogeneity estimates in fact turned out as zero (Turner
et al. 2012), while the numbers are higher for “small” meta-analyses, and lower for analyses
involving many studies (Kontopantelis et al. 2013). Meanwhile the choice of analysis method
(fixed- or random-effects) also correlates with the number of studies involved, with larger
numbers of studies increasing the chances of a random-effects model being employed (Kon-
topantelis et al. 2013). Kontopantelis et al. (2013) also compared the fraction of heterogeneity
estimates resulting as zero in actual meta-analyses with that obtained from simulation, sug-
gesting that heterogeneity is commonly underestimated or remains undetected.

Once an estimate for the amount of heterogeneity has been arrived at, what is commonly
done is to use this as a plug-in estimate and proceed to compute further tests and estimates
conditioning on the heterogeneity estimate as if its true value were known (Hedges and Olkin
1985; Hartung et al. 2008; Borenstein et al. 2009). Such a procedure would be warranted if the
heterogeneity estimate was estimated with relatively great precision. Notable exceptions here
are the methods proposed by Follmann and Proschan (1999); Hartung and Knapp (2001a,b)
and Sidik and Jonkman (2002), where the estimation uncertainty in heterogeneity is accounted
for (on the technical side resulting in an inflated standard error and a heavier-tailed Student-t
distribution to be utilized for deriving tests or confidence intervals), or bootstrap methods
(Van den Noortgate and Onghena 2005) and parameter estimation in the generalized inference
framework (Friedrich and Knapp 2013).

Bayesian and frequentist approaches in comparison

While the interpretation of results from a frequentist analysis, especially significance tests
and confidence intervals, is commonly challenging and often misunderstood (Morey, Hoek-
stra, Rouder, Lee, and Wagenmakers 2016; Hoekstra, Morey, Rouder, and Wagenmakers
2014), Bayesian results usually address the actual research question more directly and may
be interpreted more intuitively (Jaynes 2003; Spiegelhalter et al. 2004; Szucs and Ioannidis
2017; Kruschke and Liddell 2018). On the one hand, frequentist confidence intervals aim
to uniformly provide a pre-specified coverage probability conditionally on any single point
in parameter space, while Bayesian credible intervals account for the prior distribution and
consequently provide proper coverage on average over the prior (Dawid 1982; see also Ap-
pendix E, page 49). By their construction, they directly relate to the information on the
parameters after considering the data at hand, which is not quite the intention behind clas-
sical confidence statements; even if a proper (“frequentist”) coverage probability is attained,
this may still lead to rather counterintuitive conclusions in the face of actual data (Jaynes
1976; Morey et al. 2016).

In some statistical applications, there is little difference between the results from frequentist
and Bayesian analyses; often one may be considered a limiting or special case of the other,
while interpretations remain somewhat different (Bartholomew 1965; Jaynes 1976; Lindley
1977; Severini 1991; Spiegelhalter et al. 1999; Bayarri and Berger 2004). This is not neces-
sarily the case in the present context, as meta-analyses are quite commonly based on few
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studies, so that certain large-sample asymptotics may not apply. A common misconception,
namely that a Bayesian analysis based on a uniform prior generally yielded identical results
to a frequentist, purely likelihood-based analysis, is exposed as such here. A crucial fea-
ture of meta-analysis problems is that one of the parameters, the heterogeneity, is confined
to a bounded parameter space, which sometimes causes problems for frequentist methods
(Mandelkern 2002), partly because heterogeneity estimates commonly are not adequately
characterized through a mere point estimate and an associated standard error. The com-
mon use of a plug-in estimate for the heterogeneity in frequentist procedures then turns out
problematic, as such a strategy usually only makes sense when the estimated parameter is
associated with relatively little uncertainty. Choice of a suitable heterogeneity estimator adds
to the complication, as, despite their common aim, actual estimates may turn out quite dif-
ferently, adding some degree of arbitrariness to the inference (Veroniki et al. 2016). Within a
Bayesian context, these issues do not pose difficulties, and inference on some parameters while
accounting for uncertainty in other nuisance parameters is straightforwardly solved through
marginalization. This way, uncertainty in heterogeneity is readily accommodated, and since
no asymptotic arguments need to be invoked, results are valid also for small sample sizes.
For such reasons Bayesian methods have been considered particularly well-suited for hier-
archical models in general (Browne and Draper 2006; Kruschke and Liddell 2018), and for
meta-analysis problems in particular (Smith et al. 1995; Sutton and Abrams 2001). While
Bayesian modeling necessitates the specification of a prior probability distribution over all
parameters, the range of plausible formulations in a given context is usually limited. Differ-
ences in results corresponding to different prior settings are quite natural, as effectively these
correspond to differing answers to differently posed questions.

Use of a coherent Bayesian framework also naturally facilitates advanced computations, in
which the posterior from a previous analysis constitutes the prior for a subsequent analysis.
This is useful for example in sequential meta-analyses (Spence, Steinsaltz, and Fanshawe
2016), in the design of future experiments (Schmidli, Neuenschwander, and Friede 2017),
or when utilizing historical data in the analysis of clinical trials (Wandel, Neuenschwander,
Röver, and Friede 2017).

Implementation

A number of software packages have been developed for frequentist inference within the
NNHM framework, for example the Review Manager (RevMan), that is freely available from
the Cochrane Collaboration (The Cochrane Collaboration 2014; Higgins and Green 2011), or,
within R (R Core Team 2020), the metafor and meta packages (Viechtbauer 2010; Balduzzi,
Rücker, and Schwarzer 2019; Schwarzer, Carpenter, and Rücker 2015).

Bayesian analyses are usually computationally more demanding, and quite generally these
can be approached using MCMC methods (Gilks et al. 1996). For example, meta-analysis
along with the extension to meta-regression is implemented in the bmeta R package (Ding
and Baio 2016) by utilizing Gibbs sampling via JAGS (Plummer 2003, 2008). An MCMC
approach offers great flexibility, and a number of model variations are also available, for
example, a nonparametric generalization of the NNHM in the bspmma package (Burr 2012),
a generalized approach based on model averaging in the metaBMA package (Heck, Gronau,
and Wagenmakers 2019), or methods suitable for the special problem of meta-analysis of
diagnostic studies in the bamdit and metamisc packages (Verde 2018; Debray and De Jong
2019).
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In certain model constellations, it may be possible to derive exact posterior distributions,
as for example implemented in the mmeta R package, which utilizes a parametric model for
meta-analysis of count data that are provided in terms of contingency tables (Luo, Chen,
Su, and Chu 2014). Otherwise, inference in a range of model classes may be approached via
integrated nested Laplace approximations (INLA), as utilized, e.g., in the meta4diag package
for meta-analysis of diagnostic studies (Guo and Riebler 2018), or in the nmaINLA package
for network-meta-analysis and -regression (Günhan 2017).

The bayesmeta package aims to provide easy access to a fully Bayesian analysis approach
within the common NNHM framework. While the use of MCMC methods would be an op-
tion here, these usually require a certain amount of expertise and experience in set-up and
convergence diagnostics. Also, inference based on MCMC output always contains a certain
noise component due to the finite number of samples, which may sometimes constitute a
nuisance. Use of the bayesmeta packages instantly provides accurate posterior summary fig-
ures analogous to output familiar from common (frequentist) meta-analysis output. Posterior
distributions may be accessed in quasi-analytical form, and advanced methods, e.g., for pre-
diction or shrinkage estimation, are also provided. Computations are fast and reproducible,
allowing for quick sensitivity checks and facilitating larger-scale simulations. Accuracy of the
implementation (calibration) may be verified via simulation (see also Appendix E).

1.4. Outline

The remaining paper is mostly arranged in two major parts. In the following Section 2, the
underlying theory is introduced; first the common NNHM (random-effects) model and its
notation are explained, and prior distributions for the two parameters are discussed. Then
the resulting likelihood, marginal likelihood and posterior distributions are presented and
some general points are introduced.

In Section 3, the actual usage of the bayesmeta package is demonstrated; an example data set
is introduced, along which the steps of a Bayesian meta-analysis are shown. The determination
of summary statistics and plots, as well as possible variations in the analysis setup and the
computation of posterior predictive p values are presented. Section 4 then concludes with a
summary.

2. Random-effects meta-analysis

2.1. The normal-normal hierarchical model

The aim is to infer a quantity µ, the effect, based on a number k of different measurements
which are provided along with their corresponding uncertainties. What is known are the em-
pirical estimates yi (of µ) that are associated with known standard errors σi; these constitute
the “input data”. The ith study’s measurement yi (where i = 1, . . . , k) is assumed to arise as
exchangeable and normally distributed around the study’s true parameter value θi:

yi | θi, σi ∼ N(θi, σ2
i ),

where the variability is due to the sampling error, whose magnitude is given by the (known)
standard error σi. All studies do not necessarily have identical true values θi; in order to ac-
commodate potential between-study heterogeneity in the model, we assume that each study i
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measures a quantity θi that differs from the overall mean µ by another exchangeable, normally
distributed offset with variance τ2 ≥ 0:

θi | µ, τ ∼ N(µ, τ2). (1)

This second model stage implements the random effects assumption.

Especially when the study-specific parameters θi are not of primary interest, the notation
may be simplified by integrating out the “intermediate” θi terms and stating the model in its
marginal form as

yi | µ, τ, σi ∼ N(µ, σ2
i + τ2) (2)

(Hedges and Olkin 1985; Hartung et al. 2008; Borenstein et al. 2009; Borenstein, Hedges,
Higgins, and Rothstein 2010). The two unknowns remaining to be inferred are the mean effect
µ and the heterogeneity τ , which is commonly considered a nuisance parameter. The studies’
shrinkage estimates of θi are however sometimes also of interest and may be inferred from
the model as well. In the special case of zero heterogeneity (τ = 0), the model simplifies to a
fixed-effect model in which the study-specific means θi are all identical (θ1 = . . . = θk = µ).

Such two-stage hierarchical models of an overall mean (µ) and study-specific parameters (θi)
with a random effect for each study are commonly utilized in meta-analysis applications.
The simple case of normally distributed error terms at both stages is often convenient and
easily tractable, and it also constitutes a good approximation in many cases. So, while the
effect here is treated as a continuous parameter, the model is quite commonly utilized to
also process different types of data (e.g., logarithmic odds ratios from dichotomous data, etc.)
after transformation to a real-valued effect scale (Hedges and Olkin 1985; Hartung et al. 2008;
Borenstein et al. 2009; Viechtbauer 2010; Higgins and Green 2011).

2.2. Prior distributions

General

Among the two unknowns, the effect µ is commonly of primary interest, while the hetero-
geneity τ usually is considered a nuisance parameter. In order to infer the parameters, we
need to specify our prior information about µ and τ in terms of their joint prior probability
density function p(µ, τ). What exactly constitutes a reasonable prior distribution always de-
pends on the given context (Gelman et al. 2014; Spiegelhalter et al. 2004; Jaynes 2003). For
computational convenience, in the following we assume that we can factor the prior density
into independent marginals: p(µ, τ) = p(µ) × p(τ). While this may not seem unreasonable,
depending on the context, one may also argue in favor of a dependent prior specification
(e.g., Senn 2007; Pullenayegum 2011). In the following, we aim to provide a comprehensive
overview of popular or sensible options. We will discuss proper as well as improper priors;
when using improper priors, the usual care must be taken, as the resulting posterior then
may or may not be a proper probability distribution (Gelman et al. 2014). The discussed
heterogeneity priors are also summarized in Table 1.

The effect parameter µ

An obvious choice of a non-informative prior for the effect µ, being a location parameter, is
an improper uniform distribution over the real line (Gelman et al. 2014; Spiegelhalter et al.
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2004; Jaynes 2003). A normal prior (with mean µp and variance σ2
p) is a natural choice as an

informative prior for the effect µ, and these two are also the cases we will restrict ourselves
to for computational convenience and feasibility in the following. The normal prior here
constitutes the conditionally conjugate prior distribution for the effect (see also Section 2.5).
The uninformative uniform prior would also result as the limiting case for increasing prior
uncertainty (σp → ∞).

A way to guide the choice of a vague prior is by consideration of unit information priors
(Kass and Wasserman 1995). The idea here is to specify the prior such that its information
content (variance) is in some way, possibly somewhat heuristically, equivalent to a single
observational unit. For example, if the endpoint is a logarithmic odds ratio (log-OR), a
neutral unit information prior may be given by a normal prior with zero mean (centered
around an odds ratio of 1, i.e., “no effect”) and a standard deviation of σp = 4. For a
derivation, see also Appendix A.

The heterogeneity parameter τ : Proper, informative priors

Especially since in the meta-analysis context one is commonly dealing with very small numbers
of studies k, where not much information on between-study heterogeneity may be expected
to be gained from the data, it may be worth while considering the use of informative pri-
ors. Depending on the exact context, there often is some information on what values for the
heterogeneity are more plausible and which ones are less so, and making use of the present
information may make a difference in the end. For example, if the meta-analysis is based on
logarithmic odds ratios, it will usually make sense to assume that heterogeneity is unlikely
to exceed, say, τ = log(10) ≈ 2.3, which would correspond to roughly an expected factor 10
difference in effects (odds ratios) between trials due to heterogeneity. An extensive discussion
of such cases is provided in Spiegelhalter et al. (2004, Section 5.7). Values for τ between 0.1
and 0.5 here are considered “reasonable”, values between 0.5 and 1.0 are “fairly high” and
values beyond 1.0 are “fairly extreme”. An analogous reasoning would apply for similarly
defined outcomes, for example, logarithmic relative risks, logarithmic hazard ratios, or loga-
rithmic variances (Schmidli et al. 2017). Consideration of the magnitude of unit information
variances (see previous paragraph) may also be helpful in this context, as variability (het-
erogeneity) between studies will usually be expected to be substantially below the variability
between individuals. Along these lines, it is often useful to also consider the implications
of prior specifications in terms of the corresponding prior predictive distributions; see also
Section 3.4. The impact of variations of how exactly prior information is implemented in the
model may eventually also be checked via sensitivity analyses.

A sensible informative choice for p(τ) may be the maximum entropy prior for a pre-specified
prior expectation E[τ ], the exponential distribution with rate λ = 1

E[τ ] (Jaynes 1968, 2003;

Gregory 2005). Log-normal or half-normal prior distributions, e.g., with pre-specified quan-
tiles, may also be useful alternatives. For example, for log-OR (or similar) endpoints, the
routine use of half-normal distributions with scale 0.5 or 1.0 has been suggested by Friede
et al. (2017a,b) and was shown to work well in simulations. In order to gain robustness, one
may also consider mixture distributions as informative priors, for example half-Student-t, half-
Cauchy, or Lomax distributions, which may be considered heavy-tailed variants of half-normal
or exponential distributions (Johnson, Kotz, and Balakrishnan 1994). Use of a heavy-tailed
prior distribution will allow for discounting of the prior in favor of the data in case the data ap-
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pear to be in conflict with prior expectations (O’Hagan and Pericchi 2012; Schmidli, Gsteiger,
Roychoudhury, O’Hagan, Spiegelhalter, and Neuenschwander 2014). The use of weakly infor-
mative half-Student-t or half-Cauchy priors may also be motivated via theoretical arguments,
as these can be shown to also exhibit favorable frequentist properties (Gelman 2006; Polson
and Scott 2012).

Although an inverse-Gamma distribution for an informative prior may seem to be an obvious
choice, use of this distribution is generally not recommended (Gelman 2006; Polson and Scott
2012). More on informative (as well as uninformative) priors may be found in Spiegelhalter
et al. (2004), Gelman (2006) and Polson and Scott (2012). Some empirical evidence to consider
for informative priors for certain types of endpoints may be found e.g., in Pullenayegum
(2011), Turner et al. (2012), Kontopantelis et al. (2013) and Van Erp et al. (2017). In
particular, Rhodes, Turner, and Higgins (2015) and Turner et al. (2015) derived empirical
priors based on data from the Cochrane database of systematic reviews; prior information
here is expressed in terms of log-normal or log-Student-t distributions.

The heterogeneity parameter τ : Proper, “non-informative” priors

Some “non-informative” proper priors have been proposed that are scale-invariant in the
sense that (like the Jeffreys prior discussed below as well) they depend only on the stan-
dard errors σi. A re-expression of the estimation problem on a different measurement scale
would entail a proportional re-scaling of standard errors and so inference effectively remains
unaffected. Such priors are discussed e.g., by Spiegelhalter et al. (2004, Section 5.7.3) and
Berger and Deely (1988). Priors like these, however, are somewhat problematic from a logical
perspective, as these imply that the prior information on the heterogeneity depended on the
accuracy of the individual studies’ estimates (Senn 2007).

The following two priors both depend on the harmonic mean s2
0 of squared standard errors,

i.e.,

s2
0 =

k
∑k

i=1 σ−2
i

.

The uniform shrinkage prior results from considering the “average shrinkage” S(τ) =
s2

0

s2
0
+τ2 ;

placing a uniform prior on S(τ) results in a prior density

p(τ) =
2τs2

0(
s2

0 + τ2
)2 (3)

for the heterogeneity, which has a median of s0. For a detailed discussion see, e.g., Spiegel-
halter et al. (2004) or Daniels (1999). A uniform prior in S(τ) is equivalent to a uniform

prior in 1−S(τ) = τ2

s2
0
+τ2 (Spiegelhalter et al. 2004), which is an expression very similar to the

I2 measure of heterogeneity due to Higgins and Thompson (2002). Substituting the harmonic
mean s2

0 for their average (ŝ2) in the prior density (3) hence yields a uniform prior in I2.

The DuMouchel prior has a similar form and is defined through

p(τ) =
s0

(s0 + τ)2
. (4)

This implies a log-logistic distribution for the heterogeneity τ that has its mode at τ = 0 and
its median at τ = s0 (Spiegelhalter et al. 2004; DuMouchel and Normand 2000).
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A conventional prior as a proper variation of the Jeffreys prior (see also the closely related
variant in Equation 8) was given by Berger and Deely (1988) as

p(τ) ∝
k∏

i=1

(
τ

(
σ2

i + τ2
)3/2

)1/k

. (5)

This prior is in particular intended as a non-informative but proper choice for testing or model
selection purposes (Berger and Deely 1988; Berger and Pericchi 2001).

The heterogeneity parameter τ : Improper priors

Uninformative priors. It is not so obvious what exactly would qualify a prior for τ as
“uninformative”. One might argue that an uninformative prior should have a probability
density function that is monotonically decreasing in τ ; another question would be whether
the density’s intercept p(τ = 0) should be positive or finite, or what the density’s derivative
near zero should be. In general, the uninformative prior for a scale parameter in a simple
normal model is commonly taken to be uniform in log(τ) (and log(τ2)) with density p(τ) ∝ 1

τ
(Jeffreys 1946; Gelman et al. 2014), however, this “log-uniform” prior will not lead to proper,
integrable posteriors in the present context (Gelman 2006). Another reasonable choice may be
the improper uniform prior on the positive real line, but care must be taken here as usual, as
the posterior may end up improper as well; this will not result in a proper posterior when there
are only one or two estimates available (i.e., when k ≤ 2) and an (improper) uniform effect
prior is used (Gelman 2006). The uniform prior may be considered a conservative choice in a
particular sense, as shown in Appendix B, but on the other hand it may also be considered
overly conservative, as it tends to attach a lot of weight to potentially unreasonably large
heterogeneity values. Gelman (2006) generally recommends a uniform heterogeneity prior as
an uninformative default, unless the number of studies k is small, or an informative prior is
desired or for other reasons.

One may also argue via certain requirements that an uninformative prior should meet (Jaynes
1968, 2003). For example, it may be reasonable to demand invariance with respect to re-
scaling of τ for the prior density p(τ), leading to a constraint of the form

1
s p
(

τ
s

)
= f(s) p(τ)

for any scaling factor s > 0 and some positive-valued function f(s) (i.e., re-scaling should not
affect the density’s shape). This requirement obviously restricts the range of priors to those
with monotonic density functions. It leads to a family of improper prior distributions with
densities

p(τ) ∝ τa (6)

for a ∈ R. This family includes (for a = −1) the common log-uniform prior for a scale
parameter mentioned above, or (for a = 0) the uniform prior. But this class also includes
further interesting cases, like, for −1 < a < 0, a compromise between the above two uniform
and log-uniform priors that is (locally) integrable over any interval [0, u] with 0 < u < ∞
while also being shorter-tailed on the right than the improper uniform prior. An obvious
example is (for a = −0.5) the prior with monotonically decreasing density function

p(τ) ∝ 1√
τ



Journal of Statistical Software 11

which corresponds to a uniform prior in
√

τ . This prior has the unusual property that the
prior density, and with that the posterior as well, exhibits a pole (i.e., approaches infinity) at
the origin. A value of a=1 would lead to a uniform prior in τ2, with an even higher preference
for large heterogeneity values, which requires at least k ≥4 studies for a proper posterior; this
prior is generally not recommended (Gelman 2006).

The Jeffreys prior. The non-informative Jeffreys prior (Gelman et al. 2014; Jeffreys 1946)
for this problem results from the form of the likelihood (see Equation 2 or 9), or more specif-
ically, the associated expected Fisher information J(µ, τ); its probability density function is

given by p(µ, τ) ∝
√

det
(
J(µ, τ)

)
. This general form of Jeffreys’ prior however is generally

not recommended when the set of parameters includes a location parameter as in the present
case; see, e.g., Jeffreys (1946), Jeffreys (1961, Section III.3.10), Berger (1985, Section 3.3.3)
and Kass and Wasserman (1996, Section 2.2). Instead, location parameters are commonly
treated as fixed and are conditioned upon (Berger 1985; Kass and Wasserman 1996). In the
present case (since µ and τ are orthogonal in the sense that the Fisher information matrix’
off-diagonal elements are zero), this leads to Tibshirani’s non-informative prior (Tibshirani
1989; Kass and Wasserman 1996, Section 3.7), a variation of the general Jeffreys prior, which
is of the form

p(τ) ∝

√√√√
k∑

i=1

( τ

σ2
i + τ2

)2
. (7)

In the following, we will consider this variant as the Jeffreys prior for the NNHM. This prior
also constitutes the Berger-Bernardo reference prior for the present problem (Bodnar, Link,
and Elster 2016; Bodnar, Link, Arendacká, Possolo, and Elster 2017). The prior is improper,
as the right tail asymptotically behaves like p(τ) ∝ 1

τ , but it is locally integrable in the left
tail with p(0) = 0. The resulting posterior is proper as long as k ≥ 2 (Bodnar et al. 2017).

In case of constant standard errors σi = σ, the prior’s mode is at τ = σ. Otherwise the
mode tends to be near the smallest σi, but the prior may also be multimodal. The Jeffreys
prior’s dependence on the standard errors σi implies that the prior information varies with
the precision of the underlying data yi. With greater precision, lower heterogeneity values
are considered plausible. On the other hand, the prior is invariant to the overall scale of
the problem (as it scales with the standard errors σi) like the proper non-informative priors
mentioned above.

Another variation of the Jeffreys prior was given by Berger and Deely (1988) and is defined
as

p(τ) ∝
k∏

i=1

(
τ

σ2
i + τ2

)1/k

. (8)

This prior is also improper, and it equals the Jeffreys prior in case all standard errors σi are
identical.

Choice of a prior

The selection of a prior for the effect µ is relatively straightforward. The normal prior’s vari-
ance allows to vary the width from narrow/informative to wide/uninformative; the improper
uniform prior as a limiting case is also available, and this may be the obvious default choice
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Proper Improper
Informative Non-informative Non-informative Scale-invariant

Examples half-normal,
half-Student-t,
half-Cauchy,
log-normal,
exponential,
. . .

uniform
shrinkage (3),
DuMouchel (4),
conventional
(5)

Jeffreys (7),
Berger-Deely (8)

uniform in τ ,
uniform in

√
τ ,

. . . (6)

Dependent on σi? no yes yes no
Scale-invariant? no scales with σi scales with σi yes
k restrictions? — k ≥ 1 k ≥ 2∗ k ≥ 3∗

∗(less if combined with a proper effect prior)

Table 1: The heterogeneity priors discussed in Section 2.2 may roughly be divided into
4 classes; some of their properties are summarized below.

in many cases. Consideration of the unit information prior’s width may also help judging the
amount of information conveyed by a given informative prior.

The heterogeneity priors discussed above may roughly be categorized in four classes, as shown
in Table 1. First of all, one needs to decide whether a proper prior is desired or required.
Arguments in favor of a proper prior may include the need for finite marginal likelihoods
and Bayes factors in model selection problems, general preference, or a small number (k) of
studies. Among the proper priors one then has the choice between informative distributions,
and priors that are supposed to be non-informative, which however depend on the involved
studies’ standard errors σi. The improper priors discussed here are all uninformative in one
or another sense; the Jeffreys and Berger-Deely priors also depend on the σi, they require at
least k = 2 available studies, the uniform prior is independent of the σi and requires at least
3 studies.

Some prior densities are illustrated in Figure 1. As the choice of a sensible informative prior
depends on the context, and some other priors depend on the σi values, the priors shown here
correspond to the example discussed in Section 3. The proper informative half-normal and
half-Cauchy priors with scale 0.5 are reasonable choices for log-ORs and similar endpoints.
The log-normal prior’s parameters are recommended for the type of investigation based on the
analysis by Turner et al. (2015). The proper uniform shrinkage, DuMouchel and conventional
priors depend on the involved studies’ standard errors σi. The improper Jeffreys and Berger-
Deely prior densities do not integrate to a finite value, so their overall scaling is somewhat
arbitrary here. Gelman (2006) generally recommends the improper uniform heterogeneity
prior, unless the number of studies k is small, or an informative prior is desired or for other
reasons. In those cases, an informative prior from the half-Student-t family is recommended,
which includes half-Cauchy and half-normal priors as special or limiting cases. Use of the
half-Cauchy family is further supported by Polson and Scott (2012) based also on classical
frequentist properties. If, for example, the endpoint is a log-OR, then, using the categorization
by Spiegelhalter et al. (2004, Section 5.7), a half-normal prior with scale 0.5 may confine
heterogeneity mostly to “reasonable” to “fairly high” values and leave about 5% probability
for “fairly extreme” heterogeneity. A larger scale parameter or a heavier-tailed distribution
may then serve as a more conservative or more robust reference for a sensitivity check (Friede
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τ

p
(τ

)

s0

0.0 0.5 1.0 1.5 2.0

half−normal(0.5)

half−Cauchy(0.5)

log−normal(−1.07, 0.87)

uniform shrinkage

DuMouchel

conventional

Jeffreys

Berger−Deely

Figure 1: A selection of prior distributions for the example data discussed in Section 3.
Half-normal and half-Cauchy parameters are reasonable choices for log-OR endpoints. The
log-normal parameters are chosen according to Turner et al. (2015). The uniform shrinkage
and DuMouchel priors are scaled relative to the harmonic mean of squared standard errors s2

0.
The Jeffreys and Berger-Deely priors are improper, so their densities do not integrate to a
finite value.

et al. 2017a,b). The Jeffreys prior constitutes another default choice of an uninformative
prior; as the Berger-Bernardo reference prior it represents the least informative prior in a
certain sense (Bodnar et al. 2017), and it will yield a proper posterior as long as at least
2 studies are available.

2.3. Likelihood

The form of the likelihood follows from the assumptions introduced in Section 2.1. The
NNHM is essentially a simple normal model with unknown mean and an unknown variance
component; the resulting likelihood function is given by

p(~y | µ, τ, ~σ) = (2π)− k
2 ×

k∏

i=1

1√
σ2

i + τ2
exp

(
−1

2

(yi − µ)2

σ2
i + τ2

)
,

where ~y and ~σ denote the vectors of k effect measures yi and their standard errors σi. For
any practical application it is often more useful to consider the logarithmic likelihood, i.e.,

log
(
p(~y | µ, τ, ~σ)

)
= −k

2 log(2π) − 1
2

k∑

i=1

(
log(σ2

i + τ2) +
(yi − µ)2

σ2
i + τ2

)
. (9)
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2.4. Marginal likelihood

Marginalization

In order to do inference within a Bayesian framework, it is usually necessary to compute
integrals involving the posterior distribution (Gelman et al. 2014). For example, in a multi-
parameter model, one may be interested in the marginal posterior distribution or in the
posterior expectation of a certain parameter, both of which result as integrals. Key to the
bayesmeta implementation is the partly analytical and partly numerical integration over pa-
rameter space. In the following, we will derive the marginal posterior distribution of the
heterogeneity parameter via the marginal likelihood, and we will later see how marginal and
conditional distributions may be utilized to evaluate the required integrals. The likelihood
is initially a function of both parameters (µ and τ), and the marginal likelihood of the het-
erogeneity τ results from integration over the effect µ, using its prior distribution, which we
specified to be either uniform or normal.

Uniform prior

Using the improper uniform prior for the effect µ (p(µ) ∝ 1), we can derive the marginal
likelihood, marginalized over µ,

p(~y | τ, ~σ) =

∫
p(~y | µ, τ, ~σ) p(µ) dµ. (10)

For the NNHM, the integral turns out as

p(~y | τ, ~σ) =
(
2π
)− k−1

2 ×
k∏

i=1

1√
σ2

i + τ2
× exp

(
−1

2

(
yi − µ̂(τ)

)2

σ2
i + τ2

)
× 1√∑k

i=1
1

σ2
i
+τ2

, (11)

where µ̂(τ) is the conditional posterior mean of µ for a given heterogeneity τ . Conditional
mean and standard deviation are given by

µ̂(τ) = E[µ | τ, ~y, ~σ] =

∑k
i=1

yi

σ2
i
+τ2

∑k
i=1

1
σ2

i
+τ2

, σ̂(τ) =
√

Var(µ | τ, ~y, ~σ) =

√√√√ 1
∑k

i=1
1

σ2
i
+τ2

. (12)

A derivation is provided in Appendix C; the standard deviation σ̂(τ) will become relevant
later on. On the logarithmic scale the marginal likelihood then is:

log
(
p(~y | τ, ~σ)

)
=

− 1

2

(
(k−1) log(2π) +

k∑

i=1

(
log
(
σ2

i +τ2)+

(
yi − µ̂(τ)

)2

σ2
i + τ2

)
+ log

( k∑

i=1

1

σ2
i +τ2

))
. (13)

Conjugate normal prior

The normal effect prior here is the conditionally conjugate prior distribution, since the result-
ing conditional posterior (for a given τ value) again is of a normal form. Calculations for the
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(proper) normal prior for the effect µ work similarly to the previous derivation. Assume the
prior for µ is normal with mean µp and variance σ2

p, i.e., it is defined through the probabil-

ity density function p(µ) = 1√
2π σp

exp
(
−1

2
(µ−µp)2

σ2
p

)
. The necessary integral for the marginal

likelihood then results as

p(~y |τ, ~σ) =

∫
p(~y | µ, τ, ~σ) p(µ) dµ

=
(
2π
)− k+1

2 × 1√
σ2

p

×
k∏

i=1

1√
σ2

i + τ2
×
∫

exp

(
−1

2

[(µ − µp)2

σ2
p

+
k∑

i=1

(yi − µ)2

σ2
i + τ2

])
dµ.

One can see that the prior parameters (µp and σp) enter in a similar manner as the data
points (yi and σi). In analogy to the previous derivation, define the conditional posterior
mean and standard deviation

µ̂(τ) =

µp

σ2
p

+
∑k

i=1
yi

σ2
i
+τ2

1
σ2

p
+
∑k

i=1
1

σ2
i
+τ2

and σ̂(τ) =
1√

1
σ2

p
+
∑k

i=1
1

σ2
i
+τ2

, (14)

and the logarithmic marginal likelihood turns out as

log
(
p(~y | τ, ~σ)

)
= −1

2

(
k log(2π) + log

(
σ2

p

)
+

k∑

i=1

log
(
σ2

i +τ2)

+

(
µp − µ̂(τ)

)2

σ2
p

+
k∑

i=1

(
yi − µ̂(τ)

)2

σ2
i + τ2

+ log

(
1

σ2
p

+
k∑

i=1

1

σ2
i +τ2

))
. (15)

Note that, comparing Equations 13 and 15 (as well as Equations 12 and 14), as expected, use
of the uniform prior constitutes the limiting case of large prior uncertainty (σp → ∞).

2.5. Conditional effect posteriors

As long as a uniform or normal prior for the effect µ is used, the effect’s conditional posterior
distribution for a given heterogeneity value, p(µ | τ, ~y, ~σ), again is normal with mean µ̂(τ)
and standard deviation σ̂(τ) as given in Equation 12 or 14, respectively (Gelman et al. 2014).

Note that the conditional posterior moments (Equation 12) are also commonly utilized in
frequentist fixed-effect and random-effects meta-analyses. The mean µ̂(τ) constitutes the
conditional maximum likelihood estimate (of µ), conditional on a particular amount of het-
erogeneity τ , while σ̂(τ) gives the corresponding (conditional) standard error. Plugging in
τ =0 yields the fixed-effect estimate of µ, while a value τ > 0 yields a random-effects estimate
(Hedges and Olkin 1985, Section 6); see also Section 3.5 for an example.

2.6. Marginal and joint posterior

Having derived the marginal likelihood p(~y | τ, ~σ) in Section 2.4, the (one-dimensional) mar-
ginal posterior density of τ may be computed (up to a normalizing constant) by multiplication
with the heterogeneity prior

p(τ | ~y, ~σ) ∝ p(~y | τ, ~σ) × p(τ). (16)
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This feature was one of the reasons for specifying the priors for µ and τ as independent (see
Section 2.2). One-dimensional integration can now easily be done numerically for arbitrary
priors p(τ), as long as the resulting posterior is proper.

The effect’s conditional posterior p(µ | τ, ~y, ~σ) (see Section 2.5) is of particular interest, since
the joint posterior may be re-expressed in terms of the conditional as

p(µ, τ | ~y, ~σ) = p(µ | τ, ~y, ~σ) × p(τ | ~y, ~σ). (17)

In this formulation, it becomes obvious that the effect’s marginal distribution is a continuous
mixture distribution, in which the normal conditionals p(µ | τ, ~y, ~σ) are mixed via the marginal
p(τ | ~y, ~σ) with

p(µ | ~y, ~σ) =

∫
p(µ, τ | ~y, ~σ) dτ =

∫
p(µ | τ, ~y, ~σ) × p(τ | ~y, ~σ) dτ

(Seidel 2010; Lindsay 1995). This expression allows for easy numerical approximation of
posterior integrals of interest. For example, the marginal distribution of the effect µ (the
normal mixture) may be approximated by using a discrete grid of τ values and summing up
the normal conditionals using weights defined through τ ’s marginal density:

p(µ) =

∫
p(µ | τ) p(τ) dτ ≈

∑

j

p(µ | τj) wj , (18)

where the set of τj is appropriately chosen and corresponding “weights” wj (with
∑

j wj = 1)
are based on the marginal p(τ). With that, it is now relatively straightforward to work with
the joint distribution, derive marginals, moments, implement Monte Carlo integration, and so
on. A general prescription of how to approach a discrete approximation as sketched in Equa-
tion 18 while keeping the accuracy under control is given by the direct algorithm described
by Röver and Friede (2017). A few more technical details are also given in Section 2.11 and
Appendix D.

2.7. Predictive distribution

The predictive distribution expresses the posterior knowledge about a “future” observation,
i.e., an additional draw θk+1 from the underlying population of studies. This is commonly of
interest in order to judge the amount of heterogeneity relative to the estimation uncertainty
(Riley, Higgins, and Deeks 2011; Guddat, Grouven, Bender, and Skipka 2012; Bender, Kuß,
Koch, Schwenke, and Hauschke 2014), or for extrapolation in the design and analysis of future
studies (Schmidli et al. 2014). Technically, the predictive distribution p(θk+1 | ~y, ~σ) is similar
to the marginal distribution of the effect µ (see previous section). Conditionally on a given
heterogeneity τ , and for the uniform or normal effect prior, the predictive distribution again
is normal with moments

E[θk+1 | τ, ~y, ~σ] = µ̂(τ) and Var(θk+1 | τ, ~y, ~σ) = σ̂2(τ) + τ2.

2.8. Shrinkage estimates of study-specific means

Sometimes it is of interest to also infer the posterior distributions of the study-specific param-
eters θj . These may for example in the focus if a meta-analysis is performed in order support
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the analysis of a particular study by borrowing strength from a number of related studies
(Gelman et al. 2014; Schmidli et al. 2014; Wandel et al. 2017). Conditionally on a particular
heterogeneity value τ , these distributions are again normal with moments given by

E[θj | τ, ~y, ~σ] =

1
σ2

j

yj + 1
τ2 µ̂(τ)

1
σ2

j

+ 1
τ2

,

Var(θj | τ, ~y, ~σ) =
1

1
σ2

j

+ 1
τ2

+

(
1

τ2

1
σ2

j

+ 1
τ2

σ̂

)2

(Gelman et al. 2014, Section 5.5). These expressions illustrate the shrinkage of posterior
estimates towards the common mean as a function of the heterogeneity. Analogously to
the effect’s posterior and predictive distribution, these conditional moments again allow to
approximate each individual θi’s marginal posterior distribution via a discrete mixture to
marginalize over the heterogeneity.

2.9. Credible intervals

Credible intervals derived from a posterior probability distribution may be computed, e.g.,
using the distribution’s α

2 and (1− α
2 ) quantiles. However, such a simple central interval may

not necessarily be the most sensible summary of a posterior distribution, especially if it is
skewed or extends to the boundary of its parameter space. In such cases, it usually makes
more sense to consider the highest posterior density (HPD) region, i.e., a (1−α) credible region
enclosing the (1−α) posterior probability where the posterior density is largest (Gelman et al.
2014). Such a region may be disjoint and hard to determine, but closely related (and identical
for unimodal distributions) is the shortest credible interval. Both types of intervals, central
and shortest, will be considered in the following.

2.10. Posterior predictive checks and p values

Posterior predictive model checks allow to investigate the fit of a model to a given data set
(Gelman, Meng, and Stern 1996; Gelman 2003; Gelman et al. 2014). The consistency of data
and model is explored by comparing the actual data to data sets predicted via the posterior
distribution. The comparison is usually done graphically, or via suitable summary statistics
of actual and predicted data; a discrepancy then is an indicator of a poor model fit.

If the summary statistic is one-dimensional, then the comparison may be formalized by fo-
cusing on the fractions of predicted values above or below the actually observed value. This
leads to the concept of posterior predictive p values, which are closely related to classical
p values (Meng 1994; Berkhof, Van Mechelen, and Hoijting 2000; Gelman 2013; Wasserstein
2016). Posterior predictive p values have been applied and advocated in a range of contexts,
including, e.g., educational testing (Sinharay, Johnson, and Stern 2006), metrology (Kacker,
Forbes, Kessel, and Sommer 2008), psychology (Van de Schoot, Kaplan, Denissen, Asendorpf,
Neyer, and Van Aken 2014) and biology (Chambert, Rotella, and Higgs 2014).

In the context of the NNHM, posterior predictive checks are useful, as they allow to investigate
certain hypotheses of interest, like for example µ ≥ 0, τ = 0 or θi = 0. The posterior predictive
distribution conditional on a particular hypothesis may then be explored in order to derive a
corresponding posterior predictive p value. The choice of a suitable summary statistic however
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may still pose a challenge. The posterior predictive checks here are implemented via Monte
Carlo sampling, therefore parts of these procedures are computationally expensive.

2.11. How the bayesmeta() function works internally

The bayesmeta() function utilizes the fact that in the context of the NNHM the resulting
posterior is only 2-dimensional (for now ignoring the θi parameters) and may be expressed
as a mixture distribution (see Equation 17) where the heterogeneity’s marginal p(τ | ~y, ~σ) is
known, and the effect’s conditionals p(µ | τ, ~y, ~σ) are all of a normal form. This setup allows
to approximate the effect marginal by a discrete mixture (see Equation 18) while keeping the
accuracy under control; the accuracy requirements are formulated via the direct algorithm’s
two tuning parameters δ and ǫ (Röver and Friede 2017).

An example of joint and marginal posterior densities of the two parameters is illustrated in
Figure 3 (see page 24). The joint posterior density (top right) is easily evaluated based on
likelihood and prior density, both of which are available in analytical form (see Sections 2.2
and 2.3). The heterogeneity’s marginal density (bottom right) is also easily computed, based
on marginal likelihood and prior (see Equation 16); only its normalizing constant needs to be
computed numerically (using the integrate() function available in R; R Core Team 2020).
The CDF is also computed using numerical integration, and the quantile function is evaluated
using again the CDF and inverting it via R’s uniroot() root-finding function.

Now the effect’s marginal density (bottom left panel of Figure 3) is approximated by a mixture
of a finite number of normal distributions. In terms of Equation 18, what is required is a finite
set of support points τj , the parameters (means and standard deviations) of the associated
normal conditionals p(µ | τj), and the corresponding weights wj . These are all determined
using the direct algorithm, and in the bayesmeta() output (see the following section) one
can find these in the ...$support element. In the example shown in Figure 3, the effect
marginal is based on a 17-component normal mixture; this number of components is sufficient
to bound the discrepancy between actual marginal and mixture approximation to amount to
a Kullback-Leibler divergence below δ =1%. The desired accuracy can be pre-specified via
the delta and epsilon arguments (Röver and Friede 2017).

Computations related to such discrete, finite mixtures are relatively straightforward; density
and CDF are linear combination of the components’ (normal) densities and CDFs, random
number generation is simple, and moments are also easily derived (Seidel 2010; Lindsay 1995).
A few more details on the implementation are given in Appendix D. Many of the internal
computations heavily rely on numerical integration, root-finding and optimization via R’s
integrate(), uniroot(), optimize() and optim() functions. Accuracy of the eventual
implementation is confirmed using simulations in Appendix E.

3. Using the bayesmeta package

3.1. General

Before proceeding to an exemplary analysis, we will first introduce an example data set and
go through the common procedure of effect size derivation step-by-step. This will serve to
introduce some context and generate a set of estimates (yi) and associated standard errors (σi);
the subsequent section will then pick up the analysis from that starting point.



Journal of Statistical Software 19

Event
Yes No Total

Treatment a b n1 =a+b
Control c d n2 =c+d

AR event
Yes No Total

IL-2RA patients 14 47 61
Control patients 15 5 20

Table 2: The general setup of a 2×2 contingency table for dichotomous outcomes (left) and
a concrete example from the pediatric liver transplantation data set (right). Note that one
of the three data columns is redundant here, as it may be derived from the remaining two.

3.2. Example data: A systematic review in immunosuppression

Interleukin-2 receptor antagonists (IL-2RA) are commonly used as part of immunosuppres-
sive therapy after organ transplantation. Treatment strategies and responses are different
for adults and children, and it was of interest to investigate the effectiveness of IL-2RA in
preventing acute rejection (AR) events following liver transplantation in pediatric patients.
A systematic literature review was performed, and six controlled studies were found reporting
on the occurrence of AR events in pediatric liver transplant recipients (Crins, Röver, Goral-
czyk, and Friede 2014). The binary data on AR events from each of the six studies may be
summarized in a 2×2-table as shown in Table 2. The data shown here come from the earliest
of the studies found in the review (Heffron, Pillen, Smallwood, Welch, Oakley, and Romero
2003). Here one can already see that the treatment appears to be effective, as roughly only a
quarter of patients in the IL-2RA group experienced an AR event, compared to three quarters
in the control group.

In order to compare the effect magnitude between different studies, a common effect mea-
sure is computed from each contingency table (for each study i). One such measure is the
logarithmic odds ratio (log-OR), comparing the odds of an event in treatment- and control-

groups. The log-OR estimate is given by yi = log
(

a/b
c/d

)
, where a to d are the event counts

as defined in Table 2; the corresponding standard error is σi =
√

1
a + 1

b + 1
c + 1

d . In the

above example, the odds ratio is 14/47
15/5 = 14

141 ≈ 0.10; we have y1 = log
(

14/47
15/5

)
= −2.31 and

σ1 =
√

1
14 + 1

47 + 1
15 + 1

5 = 0.60. A wide range of other measures is available for contingency
tables as well as other types of study outcomes; for example, in the present case one might

alternatively be interested in (logarithmic) relative risks (RR) (log
(

a/(a+b)
c/(c+d)

)
) instead of the

log-ORs (Hedges and Olkin 1985; Hartung et al. 2008; Borenstein et al. 2009; Viechtbauer
2010; Higgins and Green 2011; Deeks 2002). The original data and derived log-ORs for all six
studies from the systematic review are shown in Table 3. The transplantation data set is also
contained in the bayesmeta package; the data need to be loaded via the data() function:

R> library("bayesmeta")

R> data("CrinsEtAl2014", package = "bayesmeta")

R> CrinsEtAl2014

Effect sizes and standard errors can be calculated from the plain count data either by imple-
menting the corresponding formulas (see above), or, much easier and recommended, by using,
e.g., the metafor (Viechtbauer 2010) package’s escalc() function:

R> library("metafor")
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Study IL-2RA group Control group Log-OR
Events Total Events Total

i Author Year (ai) (n1;i) (ci) (n2;i) yi σi

1 Heffron et al. 2003 14 61 15 20 −2.31 0.60
2 Gibelli et al. 2004 16 28 19 28 −0.46 0.56
3 Schuller et al. 2005 3 18 8 12 −2.30 0.88
4 Ganschow et al. 2005 9 54 29 54 −1.76 0.46
5 Spada et al. 2006 4 36 11 36 −1.26 0.64
6 Gras et al. 2008 0 50 3 34 −2.42 1.53

Table 3: Data from the immunosuppression example. Each row here summarizes a 2×2
contingency table, the last two columns show the corresponding derived log-ORs (yi) and
their associated standard errors (σi).

R> crins.es <- escalc(measure = "OR", ai = exp.AR.events, n1i = exp.total,

+ ci = cont.AR.events, n2i = cont.total, slab = publication,

+ data = CrinsEtAl2014)

R> crins.es

One can see that the escalc() function uses a terminology analogous to that in Table 2 to
interface with binary outcome data; the ai input argument corresponds to the ai table entries
(number a of events in the treatment group for each study i), and so on. The output of the
escalc() function (here: the data frame named crins.es) will then be the original data
along with two additional columns named yi and vi containing the calculated effect sizes (yi)
and the squared (!) standard errors (σ2

i ), respectively.

Note that for computing the 6th study’s log-OR (see Table 3), a continuity correction was nec-
essary, because one of the contingency table entries was zero (Sweeting, Sutton, and Lambert
2004). For more details on effect size calculation and default behavior, see also Viechtbauer
(2010) or the escalc() function’s online documentation.

3.3. Performing a Bayesian random-effects meta-analysis

The bayesmeta() function

In order to perform a random-effects meta-analysis, we need to specify the data, as well as
the prior for the unknown parameters µ and τ (see Section 2.2). For the effect µ we are
restricted to normal or uniform priors; here we use a vague prior centered at µp = 0, which
corresponds to an OR of 1, i.e., no effect. The prior standard deviation we set to σp = 4,
corresponding to the vague unit information prior (see Section 2.2). For the heterogeneity,
we use a half-normal prior with scale 0.5, confining the a priori expected heterogeneity to
τ ≤ 0.98 with 95% probability (i.e., allowing for “fairly extreme” values with only about 5%
prior probability).

With the log-ORs computed as in the previous section, we can now execute the analysis using
the following call

R> ma01 <- bayesmeta(y = crins.es[, "yi"], sigma = sqrt(crins.es[, "vi"]),

+ labels = crins.es[, "publication"], mu.prior.mean = 0, mu.prior.sd = 4,

+ tau.prior = function(t) dhalfnormal(t, scale = 0.5))
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The first three arguments pass the data (vectors of estimates yi and standard errors σi) and
(optionally) a vector of corresponding study labels to the bayesmeta() function. Note that the
metafor package’s escalc() function returned variances (i.e., squared standard errors), while
the bayesmeta() function’s sigma argument requires the standard errors (i.e., the square
root of the variances); hence the additional square-root-transformation here. The following
arguments specify the prior mean and standard deviation of the (normal) prior for the effect µ.
Finally, the last argument specifies the prior for the heterogeneity τ . While for the effect prior
we are restricted to using normal or improper uniform priors, the heterogeneity prior can be
of essentially any type. Specification of the heterogeneity prior works via specification of its
prior density function. While this type of argument specification is somewhat unusual, it is
reasonably straightforward, as one can see above. The dhalfnormal() function here is the
half-normal distribution’s density function; see also the corresponding online help (e.g., via
entering ?dhalfnormal in R; R Core Team 2020).

Retrieving and processing the yi and vi elements (as well as study labels, if available) from
an escalc() result in general is not complicated, and the bayesmeta() function can also do
this automatically for any escalc() output, including the many types of effect sizes that are
available (Viechtbauer 2010). Using simply the escalc() function’s output as an input, the
identical result can be achieved by calling

R> ma01 <- bayesmeta(crins.es, mu.prior.mean = 0, mu.prior.sd = 4,

+ tau.prior = function(t) dhalfnormal(t, scale = 0.5))

The bayesmeta() computations may take up to a few seconds, but with that the main
calculations are done, and the essential results are stored in the generated object of class
‘bayesmeta’ (here named ma01). One can inspect the results by printing the returned object:

R> ma01

'bayesmeta' object.

6 estimates:

Heffron (2003), Gibelli (2004), Schuller (2005), Ganschow (2005),

Spada (2006), Gras (2008)

tau prior (proper):

function(t) dhalfnormal(t, scale=0.5)

mu prior (proper):

normal(mean=0, sd=4)

ML and MAP estimates:

tau mu

ML joint 0.32581341 -1.578262

ML marginal 0.46441292 -1.578003

MAP joint 0.08690907 -1.559376

MAP marginal 0.24531385 -1.569122
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Figure 2: A forest plot, generated using the forestplot() function with default settings,
showing the input data, effect estimate, prediction interval and shrinkage estimates.

marginal posterior summary:

tau mu

mode 0.2453139 -1.5691216

median 0.3445022 -1.5734823

mean 0.3810562 -1.5764366

sd 0.2593672 0.3295298

95% lower 0.0000000 -2.2312306

95% upper 0.8607305 -0.9264079

(quoted intervals are shortest credible intervals.)

One can see that the analysis was based on k =6 studies, that both parameters’ priors were
found to be proper, and maximum-likelihood (ML) as well as maximum-a-posteriori (MAP)
values are quoted. Probably most interestingly, under “marginal posterior summary” one can
find summary statistics describing the marginal posterior distributions of heterogeneity (τ)
and effect (µ), which may often be the most relevant figures. The resulting posterior median
and 95% credible interval for the effect µ here are at a log-OR of −1.57 [−2.23, −0.93]; this
information may eventually constitute the essential result in many cases.

The forestplot() function

To illustrate data and results, one can use the forestplot() function. This function is actu-
ally a ‘bayesmeta’-specific method based on the forestplot package’s generic forestplot()

function (Gordon and Lumley 2017). In its simplest form, it may be used as

R> forestplot(ma01)

Figure 2 shows the forestplot() function’s default output for the example analysis. In the
figure one can see all estimates yi along with 95% intervals based on the provided standard
errors σi. At the bottom, 95% credible intervals for the effect and for the predictive distri-
bution are shown (Lewis and Clarke 2001; Guddat et al. 2012). Next to each of the quoted
estimates (as specified through yi and σi), the shrinkage intervals for the study-specific ef-
fects θi are also shown in gray; these illustrate the posterior of each individual study’s true
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effect (see Equation 1 and Section 2.8). The forest plot can be customized in many ways; one
can add columns to the table, change axis scaling and labels, omit shrinkage or prediction
intervals, etc. For all the options see the online documentation for the forestplot method
for ‘bayesmeta’ objects.

The plot() function

The analysis output may be inspected more closely using the plot() function:

R> plot(ma01)

The output for our example is shown in Figure 3; in particular, the joint and marginal
posterior distributions are illustrated in detail. Prior densities may be superimposed by using
the prior = TRUE argument, and axis ranges may also be specified manually; see also the
online help for the plot method for ‘bayesmeta’ objects.

Elements of the bayesmeta() output

It is possible to access the joint and marginal densities shown in Figure 3 (and more) directly
from the bayesmeta() output. As usual for an object returned from a non-trivial analysis
function, the result of a bayesmeta() call is a list object of class ‘bayesmeta’ containing a
number of further individual objects. One can check the complete listing of available entries
in the online documentation. For example, there is the ...$summary entry giving some basic
summary statistics:

R> ma01$summary

tau mu theta

mode 0.2453139 -1.5691214 -1.5632732

median 0.3445023 -1.5734819 -1.5701653

mean 0.3810562 -1.5764365 -1.5764365

sd 0.2593672 0.3295301 0.5671855

95% lower 0.0000000 -2.2311251 -2.7661319

95% upper 0.8607193 -0.9263075 -0.4072970

Some of these we already saw in the output when simply printing the object (see above). The
additional third column here shows summary statistics for the predictive distribution of a
“future” study (θk+1). One can also access the original data (the yi and σi) in the ...$y and
...$sigma entries, or the study labels and the total number of studies (k) in the ...$labels

and ...$k entries.

Most importantly, some of the elements are functions allowing to access and evaluate the
various posterior distributions. For example, the posterior density can be accessed via the
...$dposterior() function; this function has a mu or a tau argument, specifying either of
these results in a marginal density, and specifying both gives the joint density. So a simple
plot of the effect’s marginal posterior density can be generated by

R> x <- seq(-3, 0.5, length=200)
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Figure 3: The four plots generated via the plot() function. The top left plot is a simple forest
plot showing estimates and 95% intervals illustrating the input data (yi and σi) along with the
estimated mean effect µ and a prediction interval for the effect θk+1 in a future study. The top
right plot illustrates the joint posterior density of heterogeneity τ and effect µ, with darker
shading corresponding to higher probability density. The red lines indicate (approximate)
2-dimensional credible regions, and the green lines show marginal posterior medians and
95% credible intervals. The blue lines show the conditional posterior mean effect µ̂(τ) as a
function of the heterogeneity τ along with a 95% interval based on its conditional standard
error σ̂(τ) (see also Section 2.4). The red cross (+) indicates the posterior mode, while the
pink cross (×) shows the ML estimate. The two bottom plots show the marginal posterior
densities of effect µ and heterogeneity τ . 95% credible intervals are indicated with a darker
shading, and the posterior median is shown by a vertical line.

R> plot(x, ma01$dposterior(mu = x), type = "l", xlab = "effect",

+ ylab = "posterior density")

R> abline(h = 0, v = 0, col = "gray")

In order to calculate the posterior probability of a non-beneficial effect (P(µ > 0 | ~y, ~σ) =
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1 − P(µ ≤ 0 | ~y, ~σ)), one needs to evaluate the marginal posterior cumulative distribution
function (CDF). This is provided via the ...$pposterior() function:

R> 1 - ma01$pposterior(mu = 0)

[1] 6.187343e-05

Or one can also plot the complete CDF using the following code:

R> x <- seq(-3, 0.5, length = 200)

R> plot(x, ma01$pposterior(mu = x), type = "l", xlab = "effect",

+ ylab = "posterior CDF")

R> abline(h = 0:1, v = 0, col = "gray")

The same works also for the heterogeneity parameter τ ; in order to derive for example the
posterior probability for a “fairly extreme” heterogeneity (τ > 1), one simply needs to supply
the tau parameter instead:

R> 1 - ma01$pposterior(tau = 1)

[1] 0.02097488

so the posterior probability is at 2.1% here. The quantile function (inverse CDF) is also
available in the ...$qposterior() function; in order to derive for example a 99% upper
limit on the heterogeneity parameter, one needs to evaluate

R> ma01$qposterior(tau.p = 0.99)

[1] 1.109186

so the 99% upper limit would here be at τ = 1.11.

In many cases it is useful to use Monte Carlo simulation to derive other non-trivial quantities
from the posterior distribution. One can generate samples from the posterior distribution
using the ...$rposterior() function. A call of

R> ma01$rposterior(n = 5)

tau mu

[1,] 0.2001671 -2.025604

[2,] 0.5817517 -1.136931

[3,] 0.2821377 -1.598258

[4,] 0.7066918 -1.648216

[5,] 0.8308250 -1.528641

will generate a sample of 5 draws from the joint (bivariate) posterior distribution of τ and µ.
If one is only interested in the marginal distribution of µ, it is (substantially!) more efficient
to omit the τ draws and use
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R> ma01$rposterior(n = 5, tau.sample = FALSE)

[1] -1.875240 -1.027339 -1.463065 -1.406058 -1.711925

to generate a vector of µ values only.

For example, suppose that we assume a rate of AR events of pc = 50% for the control group,
and we are interested in the implied risk difference based on our analysis. The risk difference
is simply pt − pc, where pt is the event rate in the treatment (IL-2RA) group. To determine
the distribution of the risk difference we can now simply use Monte Carlo sampling and run

R> prob.control <- 0.5

R> logodds.control <- log(prob.control / (1 - prob.control))

R> logodds.treat <- (logodds.control +

+ ma01$rposterior(n = 10000, tau.sample = FALSE))

R> prob.treat <- exp(logodds.treat) / (1 + exp(logodds.treat))

R> riskdiff <- (prob.treat - prob.control)

R> median(riskdiff)

[1] -0.3284975

R> quantile(riskdiff, c(0.025, 0.975))

2.5% 97.5%

-0.4028368 -0.2149175

So here we find a median risk difference of −0.33 and a 95% credible interval of [−0.40, −0.21]
for this example. The risk difference distribution could now also be investigated further using
histograms etc.

Credible intervals

Central credible intervals can be computed using the corresponding posterior quantiles via
the ...$qposterior() function (see above). By default however, shortest intervals (see
Section 2.9) are provided in the bayesmeta() output, or they can also be computed using the
...$post.interval() function. The bayesmeta() function’s default behavior may also be
controlled by setting the interval.type argument. Looking at Figure 3 (marginal posteriors
at the bottom), one can see that, depending on the posterior’s shape, the shortest intervals
may turn out one- or two-sided, at least for the heterogeneity parameter. For example a 99%
credible interval for the heterogeneity can then be computed via

R> ma01$post.interval(tau.level = 0.99)

[1] 0.000000 1.109186

attr(,"interval.type")

[1] "shortest"
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One can also see that the returned interval contains an attribute indicating the type of
interval. A central interval then is derived by explicitly specifying the method to be used for
computation:

R> ma01$post.interval(tau.level = 0.99, method = "central")

[1] 0.003547657 1.205400562

attr(,"interval.type")

[1] "central"

Such an interval then is actually simply based on the corresponding “central” quantiles, as
one may confirm by running:

R> ma01$qposterior(tau.p = c(0.005, 0.995))

[1] 0.003547657 1.205400562

Prediction

Besides inferring the “main” parameters µ and τ , one can do the same computations for
prediction, i.e., a future study’s parameter θk+1. Basic summary statistics for the poste-
rior predictive distribution are already contained in the ...$summary element (see above).
The ...$dposterior(), ...$pposterior(), ...$qposterior(), ...$rposterior() and
...$post.interval() functions all have an optional predict argument to request the pre-
dictive distribution. That way, one can for example combine the posterior and predictive
densities of µ and θk+1 in a plot:

R> x <- seq(-3.5, 0.5, length = 200)

R> plot(x, ma01$dposterior(mu = x), type = "n", xlab = "effect",

+ ylab = "probability density")

R> abline(h = 0, v = 0, col = "gray")

R> lines(x, ma01$dposterior(mu = x), col = "red")

R> lines(x, ma01$dposterior(mu = x, predict = TRUE), col = "blue")

The resulting plot is shown in Figure 4 (left panel). Analogously, the predict argument may
be used to compute, e.g., CDFs, quantile functions or credible intervals.

Shrinkage

The “shrinkage” posterior distributions of the study-specific parameters θi are also accessible
from the bayesmeta() output. They are also summarized in the ...$theta element; for
example, shrinkage for the first two studies is shown in the first two columns:

R> ma01$theta[, 1:2]

Heffron (2003) Gibelli (2004)

y -2.3097026 -0.4595323
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Figure 4: Posterior and posterior predictive densities for the overall effect µ and a “future”
study’s parameter θk+1 (left panel), and original (y1, σ1) and shrinkage (posterior θ1 | ~y, ~σ)
estimates for the first (i=1) study (right panel). The corresponding estimates (medians and
95% credible intervals) are also shown in the forest plot in Figure 2.

sigma 0.5994763 0.5563956

mode -1.6711220 -1.3895876

median -1.7411356 -1.2821722

mean -1.7778965 -1.2339736

sd 0.4229425 0.4488759

95% lower -2.6561049 -2.0455088

95% upper -0.9920023 -0.3089461

One can see the original data (yi and σi) along with the posterior summaries (see also the
forest plot in Figure 2). The ...$dposterior(), ...$pposterior(), ...$qposterior(),
...$rposterior() and ...$post.interval() functions again also have an optional argu-
ment individual to specify one of the individual studies (either by their index or by their
name). For example, one can illustrate the first study’s (i = 1) input data (y1, σ1) and
shrinkage estimate (θ1) in a single plot using the following code

R> x <- seq(-4, 0.5, length = 200)

R> plot(x, ma01$dposterior(theta = x, individual = 1), type = "n",

+ xlab = "effect", ylab = "probability density")

R> abline(h = 0, v = 0, col = "gray")

R> lines(x, dnorm(x, mean = ma01$y[1], sd = ma01$sigma[1]),

+ col = "green", lty = "dashed")

R> lines(x, ma01$dposterior(theta = x, individual = 1), col = "green")

The resulting two densities are shown in Figure 4 (right panel). Analogously, the individual

argument may be used to compute, e.g., CDFs, quantile functions or credible intervals.
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3.4. Investigating prior variations

Prior predictive distributions

In order to judge the implications of settings of the heterogeneity prior, it is often useful
to consider prior predictive distributions (Gelman et al. 2014). Any fixed value of τ will
imply a certain (prior) distribution p(θi | µ, τ) and variability among the true study-specific
means θ1, . . . , θk, namely, a normal distribution with Var(θi | µ, τ) = τ2 (see also Equation 1).
Depending on the type of endpoint (e.g., log-ORs), the implied variability can be interpreted
and judged on the corresponding outcome scale (Spiegelhalter et al. 2004, Section 5.7).

Assuming a prior distribution for τ , rather than a fixed value, also implies assumptions on
the a priori expected distribution and variability of the true study parameters θi. The prior
predictive distribution p(θi | µ) of the θi values then is a mixture of normal distributions, with
mean µ and with the prior p(τ) as the mixing distribution for the normal standard deviation
(Seidel 2010; Lindsay 1995). As the name suggests, the prior predictive distribution is actually
closely related to the (posterior) predictive distribution discussed above (Gelman et al. 2014).
This mixture distribution can again be evaluated using the direct algorithm (Röver and
Friede 2017); this approach is implemented in the normalmixture() function.

Consider the half-normal prior distribution with scale 0.5 that was used for the heterogene-
ity in the above analysis. We can now check what prior predictive distribution this prior
corresponds to. We only need to supply the prior CDF (the mean µ is by default set to zero):

R> hn05 <- normalmixture(cdf = function(t) phalfnormal(t, scale = 0.5))

One can check the returned result (e.g., via str(hn05)); the result is a list with several
elements, among which most importantly are the mixture’s density, cumulative distribution
and quantile functions (...$density(), ...$cdf() and ...$quantile(), respectively).

For comparison, we can also check the implications of a half-Cauchy prior of the same scale,
or a half-normal prior of doubled scale:

R> hn10 <- normalmixture(cdf=function(t) phalfnormal(t, scale = 1.0))

R> hc05 <- normalmixture(cdf=function(t) phalfcauchy(t, scale = 0.5))

and compare these graphically via their implied prior predictive CDFs by accessing the three
mixtures’ ...$cdf() functions:

R> x <- seq(-1, 3, by = 0.01)

R> plot(x, hn05$cdf(x), type = "l", col = "blue", ylim = 0:1,

+ xlab = expression(theta[i]), ylab = "prior predictive CDF")

R> lines(x, hn10$cdf(x), col = "green")

R> lines(x, hc05$cdf(x), col = "red")

R> abline(h = 0:1, v = 0, col = "gray")

R> axis(3, at = log(c(0.5, 1, 2, 5, 10, 20)), lab = c(0.5, 1, 2, 5, 10, 20))

R> mtext(expression(exp(theta[i])), side = 3, line = 2.5)

The resulting plot is shown in Figure 5. In our example, the effect measure is a log-OR, so
the θi need to be interpreted on the exponentiated scale (see the top axis). A priori, 95% of
θi values are assumed to be within ± the 97.5% quantile of the (symmetric) prior predictive
distribution. We can now check what this means for our three cases:
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Figure 5: Prior predictive distributions for the true study means θi assuming several hetero-
geneity priors (and µ = 0) as computed using the normalmixture() function.

R> q975 <- c("half-normal(0.5)" = hn05$quantile(0.975),

+ "half-normal(1.0)" = hn10$quantile(0.975),

+ "half-Cauchy(0.5)" = hc05$quantile(0.975))

R> print(cbind("theta" = q975, "exp(theta)" = exp(q975)))

theta exp(theta)

half-normal(0.5) 1.092287 2.981083

half-normal(1.0) 2.184573 8.886857

half-Cauchy(0.5) 5.050571 156.111517

So for the half-normal prior with scale 0.5 we have 95% probability roughly within a factor
of 1

3 or 3 around the overall mean odds ratio (exp(µ)). For the other two priors, the numbers
are much more extreme.

Informative heterogeneity priors

It may also make sense to consider empirical information for the setup of an informative
heterogeneity prior, for example, when other evidence is extremely sparse. In medical or
psychological contexts, some evidence for certain types of endpoints may be found, e.g., in
Pullenayegum (2011), Turner et al. (2012), Kontopantelis et al. (2013) and Van Erp et al.
(2017). Instantly applicable for a meta-analysis are the numbers given by Rhodes et al. (2015)
and Turner et al. (2015), where in both cases the complete Cochrane Database of Systematic
Reviews was analyzed to infer the predictive distribution of heterogeneity for specific appli-
cations. The investigation by Rhodes et al. (2015) here was concerned with mean difference
endpoints, while Turner et al. (2015) focused on log-OR endpoints. The derived prior dis-
tributions are directly available in the bayesmeta package via the RhodesEtAlPrior() and
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TurnerEtAlPrior() functions. For our present example (a log-OR endpoint whose definition
may be categorized as “surgical / device related success / failure”, and where the comparison
is between pharmacological treatment and control), we can derive the prior simply as

R> tp <- TurnerEtAlPrior(outcome = "surgical",

+ comparator1 = "pharmacological", comparator2 = "placebo / control")

For a complete description of the possible input options see the online documentation; the
RhodesEtAlPrior() function then works similarly. The function output is a list with several
entries, including the prior density, cumulative distribution and quantile function (in this case
a log-normal distribution) in the ...$dprior(), ...$pprior() and ...$qprior() elements.
This way we can for example check what magnitude of heterogeneity values is a priori expected
for this setting by determining the median as well as 2.5% and 97.5% quantiles:

R> tp$qprior(c(0.025, 0.5, 0.975))

[1] 0.06233896 0.34300852 1.88734045

The prior density can now immediately be used and passed on to the bayesmeta() function;
for example, we can use the same effect prior as before and the “empirical” prior for the
heterogeneity:

R> ma02 <- bayesmeta(crins.es, mu.prior.mean = 0, mu.prior.sd = 4,

+ tau.prior = tp$dprior)

Comparing the results to the previous analysis (e.g., via their ...$summary outputs), one can
see that in this case they are very similar. The two corresponding prior densities are also
shown in Figure 1 (page 13; solid and dotted blue lines).

Non-informative priors

As discussed in Section 2.2, an obvious choice of an uninformative prior for the effect µ
would be the (improper) uniform prior on the real line; this one can be utilized by simply
leaving the mu.prior.mean and mu.prior.sd parameters unspecified. In order to use one
of the uninformative heterogeneity priors discussed in Section 2.2, these do not need to be
specified “manually” in terms of their probability density function; a set of priors is already
pre-implemented and may be specified via a character string. The default setting for example
is tau.prior = "uniform". If one wants to use, say, the uniform effect prior along with the
Jeffreys prior for the heterogeneity τ (see Section 2.2 and Bodnar et al. 2017), one can run

R> ma03 <- bayesmeta(crins.es, tau.prior = "Jeffreys")

The complete list of possible options is described in detail in the online documentation.

3.5. Making the connection with frequentist results

Frequentist and Bayesian approaches to inference within the NNHM framework are obviously
related, and it may be interesting to highlight the connection between the corresponding
results. A simple frequentist analysis may be performed, e.g., using the metafor (Viechtbauer
2010) package’s rma() function via
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R> ma04 <- rma(crins.es)

By default, the restricted ML (REML) heterogeneity estimator τ̂REML is used, but the exact
type of estimator does not matter here. The heterogeneity point estimate here turns out as:

R> sqrt(ma04$tau2)

[1] 0.4670268

and we can retrieve the effect estimate and its standard error via:

R> ma04$b

[,1]

intrcpt -1.591513

R> ma04$se

[1] 0.3340882

In the Bayesian setup, these numbers correspond to conditional posterior moments of the
effect (µ | τ = τ̂REML) in an analysis using the uniform effect prior. Such an analysis was
performed in the previous section (uniform effect prior and Jeffreys heterogeneity prior; the
heterogeneity prior does not matter here) and stored in the ma03 object. From this we
can retrieve the effect’s conditional posterior moments (mean and standard deviation for
τ = τ̂REML) using the ...$cond.moment() function:

R> ma03$cond.moment(tau = sqrt(ma04$tau2))

mean sd

[1,] -1.591513 0.3340882

and we can see that these correspond exactly to the frequentist effect estimate. Both analysis
approaches are related through the use of the same likelihood function; in the Bayesian
analysis uncertainty (e.g., in the heterogeneity) is accounted for via integration, and a prior
distribution for both parameters is considered.

3.6. Posterior predictive checks

A meta-analysis of two studies

Posterior predictive p values allow to quantify the consistency of the data with certain para-
metric hypotheses; see Section 2.10. In the following we will determine some p values from
the bayesmeta() output; to this end, we will investigate a second meta-analysis example
involving only two studies.

Of the six studies considered in the pediatric transplantation example (see Figure 2), only
two were randomized (Heffron et al. 2003; Spada et al. 2006). Since randomized studies are
usually considered as evidence of higher quality, now suppose one was interested in combining
the randomized studies only. Computations analogous to the preceding example may be done
via
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Figure 6: Forest plot showing the data and derived estimates for the analysis of the two
randomized studies only.

R> ma05 <- bayesmeta(crins.es[crins.es[, "randomized"] == "yes", ],

+ mu.prior.mean = 0, mu.prior.sd = 4,

+ tau.prior = function(t) dhalfnormal(t, scale = 0.5))

Figure 6 shows the forest plot for this analysis. Based on these two studies only, we can
now inspect, e.g., the estimate of the overall effect µ; comparing to the previous analysis
(Figure 2), the (absolute) estimate is slightly larger, but the credible interval is wider.

Posterior predictive p values for the effect (µ)

The obvious “null” hypothesis to be tested here is H0 : µ ≥ 0 (i.e., no effect or a harmful
effect) versus the alternative H1 : µ < 0 (a beneficial effect). We may now derive a posterior
predictive p value in order to express to what extent the data are consistent with or in
contradiction to the null hypothesis. In order to evaluate the “discrepancy” between data and
null hypothesis, we need a test statistic or discrepancy variable that in some sense measures
or captures this (in-) compatibility.

An obvious candidate may, e.g., be the posterior probability of a beneficial effect, P(µ < 0 |
y). This probability here is identical to the posterior cumulative distribution function (CDF)
evaluated at the hypothesized value µ = 0. Large values then are evidence against, and small
values speak in favor of the null hypothesis. In the present example data set we can evaluate
this figure as

R> ma05$pposterior(mu = 0)

[1] 0.9974968

Regarding our hypothesis setup, the question then is, how (un-)likely our observed value of
0.9975 is under the null hypothesis (H0 : µ ≥ 0). In order to answer that question, we
need the posterior distribution of the test statistic conditional on the null hypothesis (and
the data). Using Monte Carlo sampling, we can generate draws of parameters from the
conditional posterior distribution (µ⋆, τ⋆, θ⋆ | y, µ ≥ 0) and then generate new data based
on these (y⋆ | µ⋆, τ⋆, θ⋆) from which we can compute replications of the test statistic and
determine its distribution.
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In the bayesmeta package, posterior predictive checks are implemented in the pppvalue()

function. In order to generate posterior predictive draws, we need to specify the involved
hypotheses, the test statistic, and the number of Monte Carlo replications to be generated;
here we use n = 1000, which may take a few minutes to compute:

R> p1 <- pppvalue(ma05, parameter = "mu", value = 0, alternative = "less",

+ statistic = "cdf", n = 1000)

Since the p value is eventually computed based on the generated Monte Carlo samples, a
value of n ≫ 100 will usually be appropriate. By default, a progress bar is shown during
computation, allowing to estimate the remaining computation time. We can then inspect the
result by printing the returned object:

R> p1

'bayesmeta' posterior predictive p-value (one-sided)

data: ma05

cdf = 0.9975, Monte Carlo replicates = 1000, p-value = 0.01

alternative hypothesis: true effect (mu) is less than 0

The default output restates the hypothesis setup and shows a posterior predictive p value of
0.01. This means that in 10 of the 1000 replications generated (1%) the statistic was larger
than our observed 0.9975. One can also do a quick check of the uncertainty in this Monte-
Carlo’ed p value using, e.g., the prop.test() function, which here yields a 95% confidence
interval ranging roughly from 0.5% to 2%.

The replications are also stored in detail in the generated object (here: p1). The list object
contains a ...$replicates element, which again contains vectors of generated τ⋆ and µ⋆

draws, matrices of the corresponding θ⋆ and y⋆ draws, and finally the test statistic values
along with an indicator showing which ones constitute the “tail area” the p value is based on.
Using the provided output, one can visualize how the posterior predictive p value is computed;
executing

R> plot(ma05, which = 2, mulim = c(-3.5, 1), taulim = c(0, 2))

R> abline(h = p1$null.value)

R> points(p1$replicates$tau, p1$replicates$mu, col = "cyan")

one can see the joint posterior distribution of heterogeneity τ and effect µ along with the
generated samples, which, according to the specified null hypothesis, are confined to µ ≥ 0
(see Figure 7, left panel). The resulting test statistic values can be illustrated via their
empirical cumulative distribution function, which can be generated by

R> plot(ecdf(p1$replicates$statistic[, 1]))

R> abline(v = p1$statistic, col = "red")

R> abline(h = 1 - p1$p.value, col = "green")

(see Figure 7, right panel). The “test statistic” values range between 0 and 1, and their
distribution is clearly not uniform. The actualized value in the present data set (0.9975,



Journal of Statistical Software 35

(joint posterior density)

 50% 

 90% 

 95% 

 99% 

0.0 0.5 1.0 1.5 2.0

−
3

−
2

−
1

0
1

heterogeneity τ

e
ff
e
c
t 

µ

●

● ●

●
●●

● ●

● ●

●

●
●

●

●

●

●

●
●● ●

●

●
● ●●●

●

●

●

●
● ● ●●

● ● ●

●

●

●● ● ●
●

●
●

●

●●

●

●

●

●

● ●
●

●
●

●

●
● ●

●

●

●
●

●
●

●
●

●

●

●
●

●

●●

●

●

●

● ●

●

●●

●

●● ●
●

●● ●
●

●

● ●● ●●

●● ●
●●

●● ●●

●
●●

●

●
●

●
●

●
●

● ●● ● ●●●

●

●

● ●

●

●

●

●
●

●

● ●●

●

●

●
●●● ●

●
●

● ●● ●
●●

●

●●●

●

●
●

●
●

● ● ●●

●

● ●

●

●
●

●● ●

●
●

●

●●
●

●
●●

● ●

●
●

●

●
●●

●

●

● ●

●

● ●

●

●

● ●

●

● ●
●

●

●

●

●

●

●
●

●

●

●●

●

●●
●

●
●

●
●

● ●

●

●●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●
●

●●
●

● ●

●●●

●
●

●
●

●

●

●

●

●
●

●
●

●
● ●

●

●
●

●
●●● ●

●

●
●

●

●●●
●

●
●●

●● ● ●

●

●

● ●

●

●

●
●

●
●

●●●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

● ●●
●

●

●

●
●

● ●

●

●
●

● ●●● ●

●

●

●

●
●

●

●

●

●
●

●● ●

●

●

●●

●

●● ●

●

● ●

●

●

●
●●

●
●

●
●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

● ●

●

● ●

●
●

●

●
●

●
●

●
●

●
●

● ●●
●

●

● ●●

●

● ●

●●

●

●

●
●● ●

● ●
●

●
●

●●
● ●

●

●

●

●●

●

●

●
● ●●

●

●●
●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●●

●

●

●
●

●

●

●●
●

●

●
●●

●

●●
●●

●

●
●
●

●
● ●

●

●

●●

●

●

●
● ●

● ● ●

●
●

●
●

●●

●
●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●
● ●

●

●

●

●

● ●

●
●

● ●

●
●●

●
●

● ●
●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

● ●●● ●
●

●

●

●

●●●
●●

●

●
●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●●

●

●●
●

●

●
●●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

● ●

●

●

●

● ●

●

●

●
●●●

●

●
●● ●

●●

●

● ●●

● ●

●
●

●

●

●

●
●

●●

● ●

●

●●

●

●

●

● ●

●
●

●●●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●● ●

●●
●

●
●

●

● ●●
● ●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●● ●
●

●
●

●

●

● ●

●●

●●
●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●
●● ●

●

●

●

●

●
● ●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●● ● ●

● ●

●
●

●

●

●

● ●● ●
●

●
●

●
●●

●

●

●

●●
●●● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●●
●

●

● ●

●

●

●
●

●

●

●●

●
●

●●

●
● ●

●
●

●

●

●

● ●
●

●
●
● ●

●

●

●

● ●

● ●

● ●

●
●

●
● ●

●

●

●

●
●

●

●●

●
●

●

●●

●

●

● ● ●

● ●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

F
n
(x

)

Figure 7: Illustration of the computation of a posterior predictive p value using Monte Carlo
sampling. The left panel shows the distribution of replicated µ⋆ and τ⋆ values, the right panel
shows the empirical (cumulative) distribution of the associated “test statistic” values.

vertical red line) is situated in the upper tail of the distribution of replicated statistics values,
and the remaining tail area (horizontal green line) eventually defines the p value.

Posterior predictive p values for the heterogeneity (τ)

Computation of posterior predictive p values for the heterogeneity works analogously. Use of
the posterior CDF (P(τ ≤ 0 | y)) to test for zero heterogeneity does not make sense, as this
figure will always be zero, for the original as well as any replicated data. In order to test for
zero heterogeneity, we could use the classical Cochran’s Q statistic:

R> p2 <- pppvalue(ma05, parameter = "tau", value = 0, alternative = "greater",

+ statistic = "q", n = 1000)

which here yields a p value of 24.4%. In this case computations are much faster, since
computationally expensive re-analyses of the data are not necessary to compute the test
statistic. The resulting p value should be identical to the “classical” result, since under the
null hypothesis considered (here: τ = 0) the Q-statistic follows a χ2-distribution, as in the
frequentist setting.

In a Bayesian context, it may also make sense to consider using for example the Bayes factor
of the hypothesis of τ = 0 as the “test statistic” or “discrepancy measure”. The pppvalue()

function is able to utilize arbitrary functions as a statistic; to use the Bayes factor, we can
define the function

R> BF <- function(y, sigma) {

+ bm <- bayesmeta(y = y, sigma = sigma,

+ mu.prior.mean = 0, mu.prior.sd = 4,

+ tau.prior = function(t) dhalfnormal(t, scale = 0.5),

+ interval.type = "central")

+ return(bm$bayesfactor[1, "tau=0"])

+ }



36 bayesmeta: Bayesian Random-Effects Meta-Analysis in R

Two things are worth noting here. Firstly, it makes sense to use matching (especially prior)
specifications for the bayesmeta() call within the BF() function as for the original analysis
(here: the previously generated ma05 object). Secondly, the use of central intervals (see
the interval.type argument) is more efficient, since these are faster to compute, and the
intervals are otherwise irrelevant here. In order to utilize the function for a posterior predictive
p value, we can then call

R> p3 <- pppvalue(ma05, parameter = "tau", value = 0,

+ alternative = "greater", statistic = BF,

+ rejection.region = "lower.tail", n = 1000, sigma = ma05$sigma)

Note that the rejection region needs to be specified explicitly here (small Bayes factors con-
stitute evidence against the null hypothesis). Additional arguments may be passed to the
statistic function, like the sigma argument above. The Bayes factor in this case yields a
similar p value to Cochran’s Q statistic (p = 22.2%).

Posterior predictive p values for individual effects (θi)

Quite commonly in a meta-analysis, interest may also be in one of the study specific param-
eters θi (Schmidli et al. 2014; Wandel et al. 2017). For example, suppose that at the end of
the latter of the two concerned studies (Spada, 2006) a meta-analysis was performed to eval-
uate the cumulative evidence, but main interest still was in the outcome of the second study
that had just been conducted; it would then only be considered in the light of the previous
evidence. In such a scenario, we can then evaluate a posterior predictive p value for the 2nd
study’s effect (θ2); this shrinkage estimate is also shown in Figure 6. Using the pppvalue()

function, we can simply refer to a particular study’s parameter by its index or its label:

R> p4 <- pppvalue(ma05, parameter = "Spada", value = 0,

+ alternative = "less", statistic = "cdf", n = 1000)

which here results in a p value of around 16.1%.

4. Summary

A Bayesian approach has distinct advantages in the context of meta-analysis; it allows to
coherently process the uncertainty in the heterogeneity (nuisance) parameter while focusing
on inference for the effect parameter(s), small sample sizes (numbers of studies) do not pose
a difficulty, and interpretation of the results is very straightforward. Since meta-analyses are
quite commonly based on only very few studies, the opportunity to formally utilize external
information in the analysis via the prior specification may be a welcome feature. Unlike for
some other methods whose results depend on the specification of secondary details, a Bayesian
analysis result is uniquely defined once the model (likelihood and prior) is specified.

The application of Bayesian reasoning for this purpose is not a novelty (Spiegelhalter et al.
2004), but it usually comes with a certain computational burden; often MCMC methods
are necessary, which demand a substantial amount of attention on their own (Gilks et al.
1996). The bayesmeta package (Röver 2020) allows to perform Bayesian random-effects meta-
analyses without the need to worry too much about the computational details. Package
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bayesmeta (Röver 2020) is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=bayesmeta.

Some of the technical details of the computational approach underlying the package have
been described elsewhere (Röver and Friede 2017). The simple normal-normal hierarchical
model (NNHM) treated here is applicable in a wide range of contexts and is routinely used
for many types of input data and effect measures (Hedges and Olkin 1985; Hartung et al.
2008; Viechtbauer 2010; Borenstein et al. 2009). The bayesmeta implementation allows for
quick, accurate and reproducible computation, and it has already facilitated some larger-
scale simulation studies to compare Bayesian results with common alternative approaches and
evaluate their relative performance (Friede et al. 2017a,b). Usage of the bayesmeta package is
not more complicated to use than many other common meta-analysis tools. The availability
of predictive distributions and shrinkage estimates makes the package attractive also for
advanced evidence synthesis applications, like extrapolation to future studies (Schmidli et al.
2014, 2017; Wandel et al. 2017). Since the generic NNHM appears in different fields of
application, use of the bayesmeta package may also be extended to other areas of research
beyond common meta-analysis. For example, it could as well be used to model hierarchical
structures within a study (e.g., groups of patients), or a two-stage approach may be useful
for meta-analysis based on individual-patient data. In future, the same numerical approach
might be extended to the more general case of meta-regression.
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A. Unit information priors for binary outcomes

A.1. Logarithmic odds ratios (log-OR)

If the effect measure of an analysis is a logarithmic odds ratio (log-OR; see Section 3.2),

then the standard error derived from a 2×2 contingency table amounts to
√

1
a + 1

b + 1
c + 1

d ,

where a, b, c and d are the four entries (counts) and N = a + b + c + d is the total number of
subjects (Hedges and Olkin 1985; Hartung et al. 2008; Borenstein et al. 2009). Assuming equal
allocation and a neutral effect, we can simply set the table allocation to a = b = c = d = N

4 . If
we further plug in a total sample size of N = 1, this leads (heuristically) to a unit information
prior for the log-OR with zero mean and a standard deviation of 4. For this prior distribution,
log-ORs are within a range of ±7.84 with 95% probability, corresponding to ORs roughly
within a range from 1

2500 to 2500.

If more generally we consider the case of a particular event probability p ∈ [0, 1], we can
derive a unit information prior by assuming a = c = pN

2 and b = d = (1−p)N
2 , leading to a

generally even larger prior standard deviation of 2√
p(1−p)

.

A.2. Logarithmic relative risks (log-RR)

Similarly to the previous section, the logarithmic relative risk (log-RR) is given by log
(

a/(a+b)
c/(c+d)

)
,

and its associated standard error is
√

1
a − 1

a+b + 1
c − 1

c+d (Hedges and Olkin 1985; Hartung

et al. 2008; Borenstein et al. 2009). Again plugging in a = b = c = d = N
4 , this now amounts

to a standard deviation of 2. If we introduce a certain event probability p (and plugging in

a = c = pN
2 and a + b = c + d = N

2 , the error is 2
√

1−p
p , which is larger for p < 1

2 and smaller

for p > 1
2 .

B. Conservatism of the uniform heterogeneity prior

As discussed in Section 2.2, it is hard to define an “uninformative” prior for the heterogeneity
parameter τ . A larger heterogeneity will first of all generally lead to a larger variance of
the effect’s marginal posterior (via the larger variance of the conditional distribution; see
Equations 12 and 14). One may then argue that an overestimation of heterogeneity may be
considered a conservative form of bias, so that, for example, among two exponential prior
distributions the one with the larger expectation was “more conservative” in a certain sense.

A shift in heterogeneity causes a change in both the conditional standard deviation and mean.
If the shift in µ̂(τ) happens to be larger than the shift in σ̂(τ), then the resulting (conditional)
confidence interval for a larger heterogeneity value does not necessarily completely contain the
interval corresponding to a smaller heterogeneity. Such cases may then lead to counterintuitive
results for (frequentist) fixed- and random-effects analysis results especially in settings with
imbalanced standard errors (Poole and Greenland 1999). Although it is not obvious whether
such pathologies are also realistic in a Bayesian analysis, a priori, this is unlikely to lead to
any systematic bias.

Nevertheless, along these lines it is possible to show a particular “conservatism” property for
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the improper uniform prior. The derivation goes as follows. Suppose we have a bounded
parameter domain [a, ∞], a likelihood function f(x) ≥ 0 (x ∈ [a, ∞]) with

∫∞
a f(x) dx < ∞,

and a prior with monotonically decreasing probability density function p(·), so that 0 < p(a) <
∞, and a ≤ x < y ⇒ 0 ≤ p(y) ≤ p(x). Using the (improper) uniform prior or prior p we
get different posteriors with cumulative distribution functions F1(·) and Fp(·), respectively.
From the above assumptions follows that

Fp(y) =

∫ y
a f(x) p(x) dx∫∞
a f(x) p(x) dx

≥
∫ y

a f(x) p(y) dx∫∞
a f(x) p(a) dx

=
p(y)

p(a)

∫ y
a f(x) dx∫∞
a f(x) dx

≥
∫ y

a f(x) dx∫∞
a f(x) dx

= F1(y)

for all y > a. This means that with Fp(y) ≥ F1(y), the posterior using the uniform prior
is stochastically larger than the posterior based on any other prior among the class of priors
with monotonically decreasing density p(·) and finite p(a) (provided the uniform prior yields a
proper posterior). In our context, this especially implies that quantiles or expectations based
on the uniform prior are larger (Shaked and Shanthikumar 2007).

The class of priors with finite intercept and monotonically decreasing density to which the
above property applies includes, e.g., the exponential, half-normal, half-Student-t, half-Cauchy
and Lomax distributions (Johnson et al. 1994), or uniform distributions with a finite upper
bound.

C. Marginal likelihood derivation

Using the improper uniform prior for µ (p(µ) ∝ 1), the marginal likelihood, marginalized
over µ, is

p(~y | τ, ~σ) =

∫
p(~y | µ, τ, ~σ) p(µ) dµ

=
(
2π
)− k

2 ×
k∏

i=1

1√
σ2

i +τ2
×
∫

exp

(
−1

2

k∑

i=1

(yi − µ)2

σ2
i +τ2

)
dµ

where

k∑

i=1

(yi − µ)2

σ2
i + τ2

=
k∑

i=1

y2
i

σ2
i + τ2

︸ ︷︷ ︸
=:a

+µ

(
−2

k∑

i=1

yi

σ2
i + τ2

)

︸ ︷︷ ︸
=:b

+µ2
k∑

i=1

1

σ2
i + τ2

︸ ︷︷ ︸
=:c

= a + b µ + c µ2

=
(µ − −b

2c )2

√
1/c

2 + a − b2

4c =

(
µ − µ̂(τ)

)2

σ̂(τ)2
+ ∆(τ)
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and

µ̂(τ) =
−b

2c
=

∑k
i=1

yi

σ2
i
+τ2

∑k
i=1

1
σ2

i
+τ2

(19)

σ̂(τ) =
√

1/c =

√√√√ 1
∑k

i=1
1

σ2
i
+τ2

(20)

∆(τ) = a − b2

4c =
k∑

i=1

y2
i

σ2
i + τ2

−

(∑k
i=1

yi

σ2
i
+τ2

)2

∑k
i=1

1
σ2

i
+τ2

.

=
k∑

i=1

1

σ2
i + τ2

(
yi −

k∑

j=1

1
σ2

j
+τ2 yj

∑k
ℓ=1

1
σ2

ℓ
+τ2

)2

=
k∑

i=1

(
yi − µ̂(τ)

)2

σ2
i + τ2

.

Note that µ̂(τ) (Equation 19) and σ̂(τ) (Equation 20) are the conditional posterior mean and
standard deviation of µ | τ . With that the marginal likelihood turns out as

p(~y | τ, ~σ) =
(
2π
)− k

2 ×
k∏

i=1

1√
σ2

i + τ2
×
∫

exp

(
−1

2

(
µ − µ̂(τ)

)2

σ̂2(τ)
− 1

2
∆(τ)

)
dµ

=
(
2π
)− k

2 ×
k∏

i=1

1√
σ2

i + τ2
× exp

(
−1

2∆(τ)
)

×
∫

exp

(
−1

2

(
µ − µ̂(τ)

)2

σ̂2(τ)

)
dµ

=
(
2π
)− k

2 ×
k∏

i=1

1√
σ2

i + τ2
× exp

(
−1

2∆(τ)
)

×
√

2π σ̂(τ)

=
(
2π
)− k−1

2 ×
k∏

i=1

1√
σ2

i + τ2
× exp

(
−1

2

(
yi − µ̂(τ)

)2

σ2
i + τ2

)
× 1√∑k

i=1
1

σ2
i
+τ2

.

The derivation for an informative normal effect prior (with mean µp and variance σ2
p) works

similarly.

D. Mixture implementation details

The approximation of marginal effect distributions etc. is implemented via the direct algo-
rithm as described by Röver and Friede (2017). This approximation is utilized to evaluate
posterior distributions of the overall effect µ as well as shrinkage estimates θi and predic-
tions θk+1. In all three cases, the distributions of interest are mixtures of conditionally
normal distributions; in order to construct the approximate discrete mixture, it is necessary
to evaluate symmetrized divergences of the conditional distributions. The symmetrized di-
vergence (relative entropy) for two normal distributions with mean and variance parameters
(µA, σ2

A) and (µB, σ2
B), respectively, is given by

Ds
(
p(ϑ | µA, σA)

∣∣ p(ϑ | µB, σB)
)

= (µA−µB)2

( 1
2

(σ−2

A
+σ−2

B
))

−1 +
(σ2

A
−σ2

B
)2

2 σ2
A

σ2
B
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(Röver and Friede 2017). Since the conditional means of µ | τ and θk+1 | τ are identical,
while the conditional variance of the latter is always equal to or larger than the former (see
Section 2.8), a grid constructed for the effect’s posterior (µ) can always be used for the
predictive distribution (θk+1) without loss of accuracy. In order not to have to construct and
consider several separate τ grids also for the different shrinkage distributions, the general
algorithm is slightly extended. Instead of determining divergences corresponding to pairs
of τ values with respect to each of the shrinkage distributions individually, the maximum
divergence across effect posterior as well as all k shrinkage distributions is considered. The
result is a single grid in τ values that may be re-used for all three types of distributions.

E. Calibration check

The inferential statements returned by a Bayesian analysis differ in their probabilistic claims
from those returned by frequentist analyses. For example, while a frequentist 95% confidence
interval usually is supposed to yield 95% coverage for repeated data generation and analysis
conditional on any single point in parameter space, a Bayesian analysis is to be understood
conditional on the assumed prior distribution, and hence the coverage holds for repeated
sampling of parameters from the prior and subsequent data generation and analysis. While
frequentist analyses often rely on large-sample-size asymptotics (here: large k), Bayesian
posterior analyses generally should (at least for proper priors) yield exact coverages, indepen-
dent of sample sizes (Dawid 1982; Gneiting, Balabdaoui, and Raftery 2007). The accuracy
(calibration) of Bayesian analysis software may be checked exploiting this property (Cook,
Gelman, and Rubin 2006). The aim of this section is to demonstrate that the bayesmeta

implementation in fact yields consistent results.

If a Bayesian analysis method is properly calibrated, then the repeated subsequent generation
of (i) parameter values θ⋆ from the prior distribution p(θ), (ii) data y⋆ from the conditional
sampling distribution p(y | θ⋆), and (iii) posterior probabilities p⋆ = P(θ ≤ θ⋆ | y⋆) will yield a
sample of so-called probability integral transform (PIT) values p⋆ (Gneiting et al. 2007). If the
implementation is accurate, then these PIT values follow a uniform probability distribution.
Investigation of the empirical cumulative distribution function(s) of individual parameters’
PIT values returns the empirical frequency with which a one-sided credible interval of a given
credible level would have covered the true value across the generated parameter and data
samples. This way it allows to investigate the fidelity of the analysis procedure across the
prior’s domain as well as across credible levels (Cook et al. 2006). For the meta-analysis
problem within the NNHM, such a calibration check may be implemented as follows:

R> mupriormean <- 0.0

R> mupriorsd <- 4.0

R> taupriorscale <- 0.5

R> Nsim <- 1000

R> pit <- matrix(NA_real_, nrow = Nsim, ncol = 2,

+ dimnames = list(NULL, c("mu", "tau")))

R> for (i in 1:Nsim) {

+ mu <- rnorm(n = 1, mean = mupriormean, sd = mupriorsd)

+ tau <- rhalfnormal(n = 1, scale = taupriorscale)

+ k <- sample(c(2, 3, 5, 10, 20), size = 1)



50 bayesmeta: Bayesian Random-Effects Meta-Analysis in R

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

effect µ

PIT value

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

heterogeneity τ

PIT value

C
D

F
Figure 8: Empirical cumulative distribution functions of a sample of PIT values for effect and
heterogeneity parameters. If the analysis is properly calibrated, the PIT values should follow
a uniform distribution (black dashed line).

+ sigma <- runif(n = k, min = 0.2, max = 1.0)

+ y <- rnorm(n = k, mean = mu, sd = sqrt(sigma^2 + tau^2))

+ bma <- try(bayesmeta(y = y, sigma = sigma,

+ tau.prior = function(t) dhalfnormal(t, scale = taupriorscale),

+ mu.prior = c(mupriormean, mupriorsd)))

+ if (!is(bma, "try-error")) {

+ pit[i, "mu"] <- bma$pposterior(mu = mu)

+ pit[i, "tau"] <- bma$pposterior(tau = tau)

+ }

+ }

Prior parameters are set at the beginning, and matching settings are used for the analysis.
Sample sizes (k) here are varied between 2 and 20, and standard errors (σi) between 0.2 and
1.0. The pit matrix consists of two column vectors of PIT values for the marginal effect (µ)
and heterogeneity (τ) posteriors, respectively. We may now illustrate the empirical cumulative
distribution function of the 1000 PIT values, e.g., using the following commands:

R> plot(ecdf(pit[, "mu"]), col = "blue",

+ main = "effect (mu)", xlab = "PIT value", ylab = "CDF")

R> lines(0:1, 0:1, lty = "dashed", lwd = 2)

R> plot(ecdf(pit[, "tau"]), col = "red",

+ main = "heterogeneity (tau)", xlab = "PIT value", ylab = "CDF")

R> lines(0:1, 0:1, lty = "dashed", lwd = 2)

(see Figure 8). The black dashed lines here indicate the limiting uniform distribution that
should be approached for large numbers of simulations. The empirical distribution is in close
agreement with the uniform distribution here.

What one can read off from the plots directly is the empirical coverage of one-sided upper
credible limits. For example, one-sided 95% credible limits empirically exhibited a coverage of
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close to 95% in the simulations. For the heterogeneity, a curve above the main diagonal may
be interpreted as “conservative” (in the sense of a tendency to overestimate heterogeneity),
while for the effect, a conservative procedure should yield a curve below the diagonal at the
lower end and above the diagonal at the upper end (i.e., leading to intervals that tend to be
wider than necessary).
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