| Type: | Package | 
| Title: | Filter Covariance and Correlation Matrices with Bootstrapped-Averaged Hierarchical Ansatz | 
| Version: | 0.3.0 | 
| Date: | 2020-09-21 | 
| Author: | Christian Bongiorno and Damien Challet | 
| Maintainer: | Damien Challet <damien.challet@gmail.com> | 
| Description: | A method to filter correlation and covariance matrices by averaging bootstrapped filtered hierarchical clustering and boosting. See Ch. Bongiorno and D. Challet, Covariance matrix filtering with bootstrapped hierarchies (2020) <doi:10.48550/arXiv.2003.05807> and Ch. Bongiorno and D. Challet, Reactive Global Minimum Variance Portfolios with k-BAHC covariance cleaning (2020) <doi:10.48550/arXiv.2005.08703>. | 
| License: | GPL-2 | GPL-3 [expanded from: GPL] | 
| Depends: | R (≥ 3.5.0), fastcluster, matrixStats | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| RoxygenNote: | 7.1.0 | 
| NeedsCompilation: | no | 
| Packaged: | 2020-09-21 15:57:33 UTC; damien | 
| Repository: | CRAN | 
| Date/Publication: | 2020-09-21 16:40:02 UTC | 
Compute the BAHC correlation matrix.
Description
Compute the BAHC correlation matrix.
Usage
filterCorrelation(x, k = 1, Nboot = 100)
Arguments
| x | A matrix:  | 
| k | The order of filtering.  | 
| Nboot | The number of bootstrap copies | 
Value
The BAHC-filtered correlation matrix of x.
Examples
r=matrix(rnorm(1000),nrow=20)   # 20 objects, 50 features each
Cor_bahc=filterCorrelation(r)
Compute the BAHC covariance matrix.
Description
Compute the BAHC covariance matrix.
Usage
filterCovariance(x, k = 1, Nboot = 100)
Arguments
| x | A matrix:  | 
| k | The order of filtering.  | 
| Nboot | The number of bootstrap copies | 
Value
The BAHC-filtered correlation matrix of x.
Examples
r=matrix(rnorm(1000),nrow=20)   # 20 objects, 50 features each
sigma=exp(runif(20))
rs=t(sigma %*% r) %*% sigma
Cov_bahc=filterCovariance(rs)