agghoo: Aggregated Hold-Out Cross Validation
The 'agghoo' procedure is an alternative to usual cross-validation.
    Instead of choosing the best model trained on V subsamples, it determines
    a winner model for each subsample, and then aggregates the V outputs.
    For the details, see "Aggregated hold-out" by Guillaume Maillard,
    Sylvain Arlot, Matthieu Lerasle (2021) <doi:10.48550/arXiv.1909.04890>
    published in Journal of Machine Learning Research 22(20):1–55.
| Version: | 0.1-0 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | class, parallel, R6, rpart, FNN | 
| Suggests: | roxygen2, mlbench | 
| Published: | 2023-05-25 | 
| DOI: | 10.32614/CRAN.package.agghoo | 
| Author: | Sylvain Arlot [ctb],
  Benjamin Auder [aut, cre, cph],
  Melina Gallopin [ctb],
  Matthieu Lerasle [ctb],
  Guillaume Maillard [ctb] | 
| Maintainer: | Benjamin Auder  <benjamin.auder at universite-paris-saclay.fr> | 
| License: | MIT + file LICENSE | 
| URL: | https://git.auder.net/?p=agghoo.git | 
| NeedsCompilation: | no | 
| Materials: | README | 
| CRAN checks: | agghoo results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=agghoo
to link to this page.