adverbial provides new_partialised()
and
new_composed()
, which extend partial()
and
compose()
functions of purrr to make it easier to extract
and replace arguments and functions, and has additional adverbial
functions such as as_step()
for step-by-step data
processing.
You can install the development version of adverbial from GitHub with:
# the released version from CRAN:
install.packages("adverbial")
# the development version from GitHub:
# install.packages("devtools")
::install_github("UchidaMizuki/adverbial") devtools
library(adverbial)
new_partialised()
is an enhanced version of
partial()
from purrr. It allows you to extract and replace
arguments of the function.
<- function(x, y) {
dist sqrt(x ^ 2 + y ^ 2)
}
<- new_partialised(
pdist
dist,list(x = 3)
)
pdist#> <partialised(1)>
#> function (x, y)
#> {
#> sqrt(x^2 + y^2)
#> }
#> (
#> x = 3
#> ...
#> )
pdist(y = 4)
#> [1] 5
# Get partialised arguments
pdist[]#> $x
#> [1] 3
$x
pdist#> [1] 3
$y
pdist#> NULL
$x <- 6
pdistpdist(y = 8)
#> [1] 10
$y <- 8
pdistpdist()
#> [1] 10
new_composed()
is an enhanced version of
compose()
from purrr. It allows you to extract and replace
functions in the composition.
<- function(x) x^2
square <- new_composed(
cdist list(
square = square,
sum = sum,
sqrt = sqrt
),dir = "forward"
)
cdist#> <composed(3)>
#> 1. square
#> function (x)
#> x^2
#>
#> 2. sum
#> function (..., na.rm = FALSE)
#> .Primitive("sum")(..., na.rm = na.rm)
#>
#> 3. sqrt
#> function (x)
#> .Primitive("sqrt")(x)
cdist(1:10)
#> [1] 19.62142
# Get composed functions
cdist[]#> $square
#> function (x)
#> x^2
#>
#> $sum
#> function (..., na.rm = FALSE)
#> .Primitive("sum")(..., na.rm = na.rm)
#>
#> $sqrt
#> function (x)
#> .Primitive("sqrt")(x)
$sum <- new_partialised(sum, list(na.rm = TRUE))
cdist
cdist(c(1:10, NA))
#> [1] 19.62142
step_by_step()
defines a step-by-step data processing
pipeline by passing a character vector with step names and
descriptions.
as_step()
converts an existing function into a step
function that can be used in a pipeline. Generated functions check if a
step is correct for objects created with step-by-step()
and
act as a normal function for other objects. With as_step(f)
(without passing a second argument) you can add another function to
step-by-step data processing.
end_step()
is a function that can be used to end the
step-by-step data processing pipeline and return the result.
# Define a step-by-step data processing pipeline
<- step_by_step(c(
dist_calculator square_step = "Square the input",
sum_step = "Sum the squares",
sqrt_step = "Take the square root"
))
# Define the steps
<- as_step(function(x) x^2, "square_step")
square_step <- as_step(sum, "sum_step")
sum_step <- as_step(sqrt, "sqrt_step")
sqrt_step
square_step#> <step: square_step>
#> function (x)
#> x^2
sum_step#> <step: sum_step>
#> function (..., na.rm = FALSE) .Primitive("sum")
sqrt_step#> <step: sqrt_step>
#> function (x) .Primitive("sqrt")
<- dist_calculator(c(1:10, NA))
dist
dist#> # Steps:
#> # ☒ 1. square_step: Square the input
#> # ☐ 2. sum_step: Sum the squares
#> # ☐ 3. sqrt_step: Take the square root
#> # ℹ Please call `square_step()` to continue.
#> #
#> [1] 1 2 3 4 5 6 7 8 9 10 NA
<- dist |>
dist square_step() |>
sum_step(na.rm = TRUE) |>
sqrt_step()
dist#> # Steps:
#> # ☒ 1. square_step: Square the input
#> # ☒ 2. sum_step: Sum the squares
#> # ☒ 3. sqrt_step: Take the square root
#> # ℹ All steps are done. Please call `end_step()`.
#> #
#> [1] 19.62142
end_step(dist)
#> [1] 19.62142