--- title: "activAnalyzer" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{activAnalyzer} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` <style> h2 { font-size: 1.7rem; } </style> The activAnalyzer package was primarily built for working through a Shiny app. The procedure for using the app is explained in the related [user's guide](https://github.com/pydemull/activAnalyzer/blob/master/inst/guide/user_guide_en.pdf). The functions used in this app can also be used to analyze data outside the app, as shown below. ## Loading packages ```{r setup, warning=FALSE, message=FALSE} library(activAnalyzer) library(magrittr) library(ggplot2) library(patchwork) library(dplyr) ``` ## Getting file ```{r} file <- system.file("extdata", "acc.agd", package = "activAnalyzer") ``` ## Preparing dataset ```{r, warning=FALSE, message=FALSE} mydata <- prepare_dataset(data = file) ``` ## Getting nonwear/wear time marks ```{r, message = FALSE} mydata_with_wear_marks <- mydata %>% mark_wear_time( to_epoch = 60, cts = "vm", frame = 90, allowanceFrame = 2, streamFrame = 30 ) ``` ```{r, include=FALSE} height_factor <- nlevels(as.factor(mydata_with_wear_marks$date)) * 0.80 ``` ## Viewing data with nonwear/wear time marks ```{r, fig.height = height_factor, fig.width=7, fig.align="center"} #| fig.alt: > #| Plot with nonwear/wear time marks plot_data(data = mydata_with_wear_marks, metric = "vm") ``` ## Viewing data with nonwear/wear time marks and with a zoom in on the figure ```{r, fig.height = height_factor, fig.width=7, fig.align="center"} #| fig.alt: > #| Plot with nonwear/wear time marks and with a zoom in on the figure plot_data( data = mydata_with_wear_marks, metric = "vm", zoom_from = "16:00:00", zoom_to = "18:00:00" ) ``` ## Getting activity intensity marks ```{r, warning = FALSE, message = FALSE} mydata_with_intensity_marks <- mark_intensity( data = mydata_with_wear_marks, col_axis = "vm", equation = "Sasaki et al. (2011) [Adults]", sed_cutpoint = 200, mpa_cutpoint = 2690, vpa_cutpoint = 6167, age = 32, weight = 67, sex = "male" ) ``` ## Viewing data with activity intensity marks ```{r, fig.height = height_factor, fig.width=7, fig.align="center"} #| fig.alt: > #| Plot with activity intensity marks plot_data_with_intensity( mydata_with_intensity_marks, metric = "vm", valid_wear_time_start = "00:00:00", valid_wear_time_end = "23:59:59" ) ``` ## Viewing data with activity intensity marks and grey bands to highlight the daily period considered for analysis ```{r, fig.height = height_factor, fig.width=7, fig.align="center"} #| fig.alt: > #| Plot with activity intensity marks and grey bands to highlight the daily period considered for analysis plot_data_with_intensity( mydata_with_intensity_marks, metric = "vm", valid_wear_time_start = "07:00:00", valid_wear_time_end = "22:00:00" ) ``` ## Viewing data with activity intensity marks and a zoom in on the figure ```{r, fig.height = height_factor, fig.width=7, fig.align="center"} #| fig.alt: > #| Plot with activity intensity marks and a zoom in on the figure plot_data_with_intensity( mydata_with_intensity_marks, metric = "vm", zoom_from = "13:00:00", zoom_to = "16:30:00" ) ``` ## Getting activity metrics by day ```{r, message = FALSE} results_by_day <- mydata_with_intensity_marks %>% recap_by_day( age = 32, weight = 67, sex = "male", valid_wear_time_start = "07:00:00", valid_wear_time_end = "22:00:00", start_first_bin = 0, start_last_bin = 10000, bin_width = 500 ) ``` ## Computing means of the metrics using the valid days ```{r, eval} mean_results <- results_by_day$df_all_metrics %>% average_results(minimum_wear_time = 10, fun = "mean") ``` ## Computing medians of the metrics using the valid days ```{r} median_results <- results_by_day$df_all_metrics %>% average_results(minimum_wear_time = 10, fun = "median") ``` ## Showing activity volume metrics ### Results by day: Tabular view ```{r} results_by_day$df_all_metrics %>% dplyr::select(date:total_steps) %>% reactable::reactable(striped = TRUE, defaultColDef = reactable::colDef(align = "center", minWidth = 180)) ``` ### Results by day: Graphical view ```{r, fig.height=10, fig.width = 17, warning=FALSE, message=FALSE} #| fig.alt: > #| Graphical view of the results by day for the activity volume metrics create_fig_res_by_day( results_by_day$df_all_metrics, minimum_wear_time_for_analysis = 10, start_day_analysis = "00:00:00", end_day_analysis = "23:59:00", metrics = "volume", epoch_label = "60s" ) + theme(plot.margin = margin(1, 1, 1, 1, "cm")) ``` ### Means | Medians computed using valid days ```{r} create_flextable_summary( results_summary_means = mean_results, results_summary_medians = median_results, metrics = "volume", epoch_label = "60s" ) ``` <br> ### Comparisons with norms and recommendations ```{r, fig.height=9, fig.width = 17, warning=FALSE, message=FALSE, fig.align="center"} #| fig.alt: > #| Comparisons with norms and recommendations # PAL g_pal <- create_fig_pal(score = mean_results[["pal"]], "en") + theme(plot.margin = margin(2, 1, 0.5, 1, "cm")) # Steps g_steps <- create_fig_steps(score = mean_results[["total_steps"]], "en") + theme(plot.margin = margin(0, 1, 0.5, 1, "cm")) # MVPA g_mvpa <- create_fig_mvpa(score = mean_results[["minutes_MVPA"]], "en") + theme(plot.margin = margin(0, 1, 0, 1, "cm")) # SED g_sed <- create_fig_sed(score = mean_results[["minutes_SED"]], "en") + theme(plot.margin = margin(0, 1, 0, 1, "cm")) # MVPA/SED ratio g_ratio <- create_fig_ratio_mvpa_sed(score = mean_results[["ratio_mvpa_sed"]], "en") + theme(plot.margin = margin(0, 1, 1, 1, "cm")) # Whole figure (g_pal + theme(legend.position = "top")) / g_steps / (g_mvpa | g_sed | g_ratio) + plot_layout(heights = c(0.8, 0.7, 1.5)) & theme(legend.justification = "center") ``` ## Showing step accumulation metrics ### Results by day: Tabular view ```{r} results_by_day$df_all_metrics %>% dplyr::select(date, max_steps_60min:peak_steps_1min) %>% reactable::reactable(striped = TRUE, defaultColDef = reactable::colDef(align = "center", minWidth = 180)) ``` ### Results by day: Graphical view ```{r, fig.height=7, fig.width = 17, warning=FALSE, message=FALSE} #| fig.alt: > #| Graphical view of the results by day for the step accumulation metrics create_fig_res_by_day( results_by_day$df_all_metrics, minimum_wear_time_for_analysis = 10, start_day_analysis = "00:00:00", end_day_analysis = "23:59:00", metrics = "step_acc", epoch_label = "60s" ) + theme(plot.margin = margin(1, 1, 1, 1, "cm")) ``` ### Means | Medians computed using valid days ```{r} create_flextable_summary( results_summary_means = mean_results, results_summary_medians = median_results, metrics = "step_acc", epoch_label = "60s" ) ``` <br> ## Showing intensity gradient and MX metrics ### Distribution of time spent in intensity bins ```{r, fig.width = 15, fig.height = 10} #| fig.alt: > #| Distribution of time spent in intensity bins | Bar plot results_by_day$p_band ``` ```{r, fig.width = 15, fig.height = 10, message = FALSE} #| fig.alt: > #| Distribution of time spent in intensity bins | Log-log plot results_by_day$p_log ``` ### Results by day: Tabular view ```{r} results_by_day$df_all_metrics %>% dplyr::select(date, ig:M5) %>% reactable::reactable(striped = TRUE, defaultColDef = reactable::colDef(align = "center", minWidth = 180)) ``` ### Results by day: Graphical view ```{r, fig.height=7, fig.width = 17, warning=FALSE, message=FALSE} #| fig.alt: > #| Graphical view of the results by day for the intensity gradient and MX metrics create_fig_res_by_day( results_by_day$df_all_metrics, minimum_wear_time_for_analysis = 10, start_day_analysis = "00:00:00", end_day_analysis = "23:59:00", metrics = "int_distri", epoch_label = "60s" ) + theme(plot.margin = margin(1, 1, 1, 1, "cm")) ``` ### Means | Medians computed using valid days ```{r} create_flextable_summary( results_summary_means = mean_results, results_summary_medians = median_results, metrics = "int_distri", epoch_label = "60s" ) ``` <br> ### Radar view based on the means of valid days ```{r, fig.align = "center", out.width='50%', out.height='50%', fig.width=8, fig.height=8} #| fig.alt: > #| Radar plot for the MX metrics create_fig_mx_summary( data = mean_results, labels = NULL, mpa_cutpoint = 2690, vpa_cutpoint = 6167 ) ``` ## Showing sedentary behaviour accumulation metrics based on valid days ### Getting results ```{r} accum_metrics_sed <- compute_accumulation_metrics( data = mydata_with_intensity_marks, behaviour = "sed", dates = c("2021-04-07", "2021-04-08", "2021-04-09", "2021-04-10", "2021-04-11") ) ``` ### Temporal distribution of sedentary bouts ```{r, fig.height = height_factor/0.75*0.85, fig.width=7, fig.align="center"} #| fig.alt: > #| Temporal distribution of sedentary bouts accum_metrics_sed$p_breaks ``` ### Alpha coefficient, median bout duration (MBD), usual bout duration (UBD), and Gini index ```{r, out.width='100%', out.height='60%', fig.height=11, fig.width=11, fig.align="center"} #| fig.alt: > #| Alpha coefficient, median bout duration (MBD), usual bout duration (UBD), and Gini index related to sedentary behaviour p1 <- accum_metrics_sed$p_alpha + guides(color = "none", fill = "none") p2 <- accum_metrics_sed$p_MBD + guides(color = "none", fill = "none") p3 <- accum_metrics_sed$p_UBD p4 <- accum_metrics_sed$p_gini (p1 | p2) / (p3 | p4) + plot_layout(guides = "collect") & theme(legend.position = 'bottom') ``` ## Showing physical activity accumulation metrics based on valid days ### Getting results ```{r} accum_metrics_pa <- compute_accumulation_metrics( mydata_with_intensity_marks, behaviour = "pa", dates = c("2021-04-07", "2021-04-08", "2021-04-09", "2021-04-10", "2021-04-11") ) ``` ### Temporal distribution of physical activity bouts ```{r, fig.height = height_factor/0.75*0.85, fig.width=7, fig.align="center"} #| fig.alt: > #| Temporal distribution of physical activity bouts accum_metrics_pa$p_breaks ``` ### Alpha coefficient, median bout duration (MBD), usual bout duration (UBD), and Gini index ```{r, out.width='100%', out.height='60%', fig.height=11, fig.width=11, fig.align="center"} #| fig.alt: > #| Alpha coefficient, median bout duration (MBD), usual bout duration (UBD), and Gini index related to physical activity p1 <- accum_metrics_pa$p_alpha + guides(color = "none", fill = "none") p2 <- accum_metrics_pa$p_MBD + guides(color = "none", fill = "none") p3 <- accum_metrics_pa$p_UBD p4 <- accum_metrics_pa$p_gini (p1 | p2) / (p3 | p4) + plot_layout(guides = "collect") & theme(legend.position = 'bottom') ```