## ----echo = FALSE------------------------------------------------------------- library(YEAB) ## ----------------------------------------------------------------------------- data("gauss_example") t_example <- gauss_example$Bin res_example <- gauss_example$Response_Average ## ----------------------------------------------------------------------------- par_est <- gaussian_fit(responses = res_example, time = t_example, max.iter = 1000) print(par_est, digits = 3) ## ----------------------------------------------------------------------------- g_plus_lin <- function(par, tiempo) { par$a * exp(-0.5 * ((tiempo - par$t0) / par$b)**2) + par$c * (tiempo - par$t0) + par$d } # The gaussian + linear model. time_points <- seq(0, 90, 0.1) # In this example we used a FI30 program so the trail lenght is 90s. y_fit <- g_plus_lin(par_est |> as.list(), time_points) # This function creates the data points using the estimated parameters applied to a Gaussian + linear function. ## ----echo = FALSE------------------------------------------------------------- plot(time_points, y_fit, type = "l", col = "black", lwd = 2, ylim = c(0, max(y_fit, res_example)), xlab = "Time in trial", ylab = "R(t)", ) points(t_example, res_example, pch = 21, bg = "red", cex = .8) legend( "topright", legend = c("nls.lm fit", "data"), lty = c(1, 0), pch = c(NA, 21), pt.bg = c(NA, "red"), col = c("black", 1), pt.cex = 1, cex = .8 )