--- title: "Predicting Crop Yields Using STCCGEV Method" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Predicting Crop Yields Using STCCGEV Method} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(STCCGEV) ``` This example fitted the STCCGEV model for regions Dufferin and Wellington with covariates cdd, frost_days, rx1day, tg_mean, and txgt_25 and predicted crop yields and compared them with actual data. ``` ```{r} bsts_Dufferin <- fit_bsts(yy_train[,1], zz_train[,1,], lags = 2, MCMC.iter = 10) bsts_Wellington <- fit_bsts(yy_train[,2], zz_train[,2,], lags = 2, MCMC.iter = 10) list_bsts_sample <- list(bsts_Dufferin, bsts_Wellington) Gaussianforecasts_G <- simulation_generalized(nsim = 10, n_train = n_train, n_test = n_test, copula = "Gaussian", init_params = init_params_full_G, fn = log_likelihood_Generalized, U_train = uu, Z_train = zz_train, X = xx_train, Y_test = yy_test, BSTS_list = list_bsts_sample) Dufferin_Gaussian_plot<- plot_forecast(forecast = Gaussianforecasts_G[[3]][,,1], data_train = yy_train[,1], data_test = yy_test[,1], time = time_all, quant_high = 0.95, quant_low = 0.05, observed_col = "#e23345", forecast_col = "#CF9FFF", title = "Dufferin - Gaussian copula forecast") Wellington_Gaussian_plot<- plot_forecast(forecast = Gaussianforecasts_G[[3]][,,2], data_train = yy_train[,2], data_test = yy_test[,2], time = time_all, quant_high = 0.95, quant_low = 0.05, observed_col = "#6195c4", forecast_col = "#CF9FFF", title = "Wellington - Gaussian copula forecast") print(Dufferin_Gaussian_plot) print(Wellington_Gaussian_plot) ```