## ----setup-------------------------------------------------------------------- library(SIBER) library(coda) ## ----basic-model-------------------------------------------------------------- # load in the included demonstration dataset data("demo.siber.data") # # create the siber object siber.example <- createSiberObject(demo.siber.data) # Calculate summary statistics for each group: TA, SEA and SEAc group.ML <- groupMetricsML(siber.example) # options for running jags parms <- list() parms$n.iter <- 2 * 10^4 # number of iterations to run the model for parms$n.burnin <- 1 * 10^3 # discard the first set of values parms$n.thin <- 10 # thin the posterior by this many parms$n.chains <- 3 # run this many chains # set save.output = TRUE parms$save.output = TRUE # you might want to change the directory to your local directory or a # sub folder in your current working directory. I have to set it to a # temporary directory that R creates and can use for the purposes of this # generic vignette that has to run on any computer as the package is # built and installed. parms$save.dir = tempdir() # define the priors priors <- list() priors$R <- 1 * diag(2) priors$k <- 2 priors$tau.mu <- 1.0E-3 # fit the ellipses which uses an Inverse Wishart prior # on the covariance matrix Sigma, and a vague normal prior on the # means. Fitting is via the JAGS method. ellipses.posterior <- siberMVN(siber.example, parms, priors) ## ----test-convergence--------------------------------------------------------- # get a list of all the files in the save directory all.files <- dir(parms$save.dir, full.names = TRUE) # find which ones are jags model files model.files <- all.files[grep("jags_output", all.files)] # test convergence for the first one do.this <- 1 load(model.files[do.this]) gelman.diag(output, multivariate = FALSE) gelman.plot(output, auto.layout = FALSE)