SDLfilter contains a variety of functions to screen GPS/Argos locations and to assess the adequacy of sample size of tracking data for animal distribution analysis.
# The official version from CRAN:
install.packages("SDLfilter")
# Or the development version from GitHub:
install.packages("devtools")
::install_github("TakahiroShimada/SDLfilter") devtools
library(SDLfilter)
There are three main filtering functions.
data(turtle)
<- dupfilter(turtle) turtle.dup
## Calculate the maximum linear speed between two consecutive locations
<- vmax(turtle.dup)
V
## Calculate the maximum one-way linear speed of a loop trip
<- vmaxlp(turtle.dup)
VLP
## Run ddfilter
<- ddfilter(turtle.dup, vmax=V, vmaxlp=VLP) turtle.dd
# Entire area
<- to_map(turtle.dup, bgmap=Australia, point.size = 2, line.size = 0.5, axes.lab.size = 0,
p1 multiplot = FALSE, point.bg = "red",
title.size=15, title="Entire area")[[1]] +
geom_point(aes(x=lon, y=lat), data=turtle.dd, size=2, fill="yellow", shape=21)+
geom_point(aes(x=x, y=y), data=data.frame(x=c(154, 154), y=c(-22, -22.5)),
size=3, fill=c("yellow", "red"), shape=21) +
annotate("text", x=c(154.3, 154.3), y=c(-22, -22.5), label=c("Retained", "Removed"),
colour="black", size=4, hjust = 0)
# Zoomed in
<- to_map(turtle.dup, bgmap=SandyStrait, xlim=c(152.7, 153.2), ylim=(c(-25.75, -25.24)),
p2 axes.lab.size = 0, point.size = 2, point.bg = "red", line.size = 0.5,
multiplot = FALSE, title.size=15, title="Zoomed in")[[1]] +
geom_path(aes(x=lon, y=lat), data=turtle.dd, size=0.5, colour="black", linetype=1) +
geom_point(aes(x=lon, y=lat), data=turtle.dd, size=2, colour="black", shape=21, fill="yellow")
## plot
::grid.arrange(p1, p2, layout_matrix=cbind(1,2)) gridExtra
The input data can be either a matrix or a list of RasterLayer objects. Each row of the matrix or each RasterLayer object contains the probability distribution of an animal. The function assumes that each column of a matrix is associated with a unique geographical location, therefore it is critical that the grid size and geographical extent are consistent across UDs. In this example (15 tracks of flatback turtles), the grid size was 1km and the geographical extent was 1901789, 1972789, -2750915, -2653915 (EPSG:3577) across all 15 layers.
library(adehabitatHR); library(raster)
## Tracking data
data(flatback)
<- track_param(flatback, param = "time") # calculate time between successive locations
flatback <- unique(flatback$id)
flatback_id
## Data range with 5km buffer
<- 5e+3
buff <- min(flatback$x) - buff; xmax <- max(flatback$x) + buff
xmin <- min(flatback$y) - buff; ymax <- max(flatback$y) + buff
ymin
## Make a grid layer
<- 1e+3 # (1km x 1km)
cell.size <- seq(xmin, xmax, cell.size)
x <- seq(ymin, ymax, cell.size)
y <- expand.grid(x = x, y = y)
xy.df <- SpatialPixels(SpatialPoints(xy.df))
xy.coords <- SpatialPoints(xy.coords, proj4string = CRS("+init=epsg:3577"))
xy.sp <- rep(1, nrow(xy.df))
z <- cbind(xy.df, z)
xyz <- SpatialPixelsDataFrame(xy.coords, xyz)
grid_spdf
## UD per turtle
<- list()
ud_raster for(i in 1:length(flatback_id)){
## ID
<- flatback_id[i]
ID
## Tracking data
<- with(flatback, flatback[id %in% ID, ])
turtle.data
## Creates an object of class Itraj
<- with(turtle.data, as.ltraj(turtle.data[,c("x", "y")], date=DateTime, id=ID, burst=ID))
data.ltraj
## Parameters for BRB
= quantile(turtle.data$pTime, probs = 0.95, na.rm = TRUE)*3600
TM = 50
LM = BRB.likD(data.ltraj, Tmax=TM, Lmin=LM)
dp = 100
HM
## Estimate the UD
<- BRB(data.ltraj, D=dp, Tmax=TM, Lmin=LM, hmin=HM, grid=grid_spdf, type="UD")
ud
## Convert the UD to raster
<- raster(ud)
ud_raster[[i]] }
# A matrix
data(ud_matrix)
# Or a list of RasterLayer/SpatRaster
data(ud_raster)
It will take some time to run this code depending on the number of iterations and the machine specs. The runtime was about 2.5 minutes for 2000 iterations on a linux machine (Intel i7-4702HQ CPU @ 2.20GHz, 16GB RAM).
<- boot_overlap(ud_matrix, R = 2000, method = "PHR") overlap
An asymptote could be considered once the mean overlap probability exceeded 95% of the estimated horizontal asymptote (Shimada et al 2021). The sample size linked to this value is deemed to be the minimum sample size required to represent the general distribution of the group.
<- asymptote(overlap, upper.degree = 5, estimator = 'glm', family = binomial) a
ggplot(data = a$results, aes(x = x))+
geom_errorbar(aes(ymin = y_lwr, ymax = y_upr), width = 0.2, colour = 'darkgrey', size = 1) +
geom_point(aes(y = y), size = 2) +
geom_hline(yintercept = a$h.asymptote*0.95, linetype = 2) +
scale_x_continuous(breaks = seq(0, 15, 3), limits = c(1.9,15.1), name = "Animals tracked (n)") +
scale_y_continuous(limits = c(0.5,1), name = "Overlap probability") +
theme_light()
Please see the package help pages and Shimada et al. (2012, 2016, 2021) for more details.
If you use the function ddfilter, please cite
Shimada T, Jones R, Limpus C, Hamann M (2012) Improving data retention and home range estimates by data-driven screening. Mar Ecol Prog Ser 457:171-180 doi: 10.3354/meps09747
If you use the functions dupfilter or depthfilter, please cite
Shimada T, Limpus C, Jones R, Hazel J, Groom R, Hamann M (2016) Sea turtles return home after intentional displacement from coastal foraging areas. Mar Biol 163:1-14 doi: 10.1007/s00227-015-2771-0
If you use the functions asymptote, boot_overlap, combn_overlap or boot_area, please cite
Shimada, T, Thums, M, Hamann, M, et al. (2021) Optimising sample sizes for animal distribution analysis using tracking data. Methods Ecol Evol 12(2):288-297 doi: 10.1111/2041-210X.13506
Version 2.3.3 (2023-11-07)