
A demonstration of the RaSEn package

Ye Tian and Yang Feng

2021-10-15

We provide a detailed demo of the usage for the RaSEn package. This package implements the random
subspace ensemble classification (RaSE) method (Tian and Feng (2021b)), the variable screening approach
via RaSE (Tian and Feng (2021a)) and the super RaSE method (Zhu and Feng (2021)).

• Random Subspace Ensemble Classification

– Introduction

– Installation

– How to fit a RaSE classifier for prediction

– How to use RaSE for feature ranking

– Super RaSE

• Variable Screening via Random Subspace Ensembles

– Introduction

– Variable screening via RaSE

Random Subspace Ensemble Classification
Introduction
Suppose we have training data {xi, yi}n

i=1 ∈ {Rp, {0, 1}}, where each xi is a 1× p vector.

Based on training data, RaSE algorithm aims to generate B1 weak learners {CSj
n }B1

j=1, each of which is
constructed in a feature subspace Sj ⊆ {1, ..., p} instead using all p features. To obtain each weak learner,
B2 candidates {CSjk

n }B2
k=1 are trained based in subspaces {Sjk}B2

k=1, respectively. To choose the optimal one
among these B2 candidates, some criteria need to be applied, including minimizing ratio information criterion
(RIC, Tian and Feng (2021b)), minimizing extended Bayes information criterion (eBIC, Chen and Chen
(2008), Chen and Chen (2012)), minimizing the training error, minimizing the validation error (if validation
data is available), minimizing the cross-validation error, minimizing leave-one-out error etc. And the type of
weak learner can be quite flexible.

To better adapt RaSE into the sparse setting, we can update the distribution of random feature subspaces
according to the selected percentage of features in B1 subspaces in each round. This can be seen as an
adaptive strategy to increase the possibility to cover the signals that contribute to our model, which can
improve the performance of RaSE classifiers in sparse settings.

The selected percentage of each of p features in B1 subspaces can be used for feature ranking as well. And
we could plot the selected percentage to intuitively rank the importance of each feature in a RaSE model.

Installation
RaSEn can be installed from CRAN.

1

install.packages("RaSEn", repos = "http://cran.us.r-project.org")

Then we can load the package:
library(RaSEn)

How to Fit a RaSE Classifier for Prediction
We will show in this section how to fit RaSE classifiers based on different types of base classifiers. First we
generate the data from a binary guanssian mixture model (model 1 in Tian and Feng (2021b))

x ∼ (1− y)N(µ(0),Σ) + yN(µ(1),Σ),

where µ(0),µ(1) are both 1 × p vectors, Σ is a p × p symmetric positive definite matrix. Here y follows a
bernoulli distribution:

y ∼ Bernoulli(π1),

where π1 ∈ (0, 1) and we denote π0 = 1− π1.

Here we follow from the setting of Mai, Zou, and Yuan (2012), letting Σ = (0.5|i−j|)p×p,µ
(0) = 0p×1,µ

(1) =
Σ−1 × 0.556(3, 1.5, 0, 0, 2,01×(p−5))T . Let n = 100, p = 50. According to the definition of minimal discrimina-
tive set in Tian and Feng (2021b), here the minimal discriminative set S∗ = {1, 2, 5}, which contribute to the
classification.

Apply function RaModel to generate training data and test data of size 100 with dimension 50.
set.seed(0, kind = "L'Ecuyer-CMRG")
train.data <- RaModel("classification", 1, n = 100, p = 50)
test.data <- RaModel("classification", 1, n = 100, p = 50)
xtrain <- train.data$x
ytrain <- train.data$y
xtest <- test.data$x
ytest <- test.data$y

We can visualize the first two dimensions or feature 1 and 2 as belows:
library(ggplot2)
ggplot(data = data.frame(xtrain, y = factor(ytrain)), mapping = aes(x = X1,

y = X2, color = y)) + geom_point()

2

−2

0

2

4

−2 0 2 4
X1

X
2

y

0

1

Similarly, we can also visualize the feature 6 and 7:
ggplot(data = data.frame(xtrain, y = factor(ytrain)), mapping = aes(x = X6, y = X7,

color = y)) + geom_point()

3

−2

−1

0

1

2

−2 −1 0 1 2
X6

X
7

y

0

1

It’s obvious to see that in dimension 1 and 2 the data from two classes are more linearly seperate than
in dimension 6 and 7. Then we call Rase function to fit the RaSE classifier with LDA, QDA and logistic
regression base classifiers with criterion of minimizing RIC and RaSE classifier with knn base classifier with
criterion of minimizing leave-one-out error. To use different types of base classifier, we set base as “lda”,
“qda”, “knn” and “logistic”, repectively. B1 is set to be 100 to generate 100 weak learners and B2 is set to be
100 as well to generate 100 subspace candidates for each weak learner. Without using iterations, we set
iteration as 0. criterion is set to be “ric” for RaSE classifier with LDA, QDA and logistic regression
while it is “loo” for RaSE classifier with knn base classifier. To speed up the computation, we apply parallel
computing with 2 cores by setting cores = 2.
fit.lda <- Rase(xtrain, ytrain, B1 = 100, B2 = 50, iteration = 0, base = "lda",

cores = 2, criterion = "ric")
fit.qda <- Rase(xtrain, ytrain, B1 = 100, B2 = 50, iteration = 0, base = "qda",

cores = 2, criterion = "ric")
fit.knn <- Rase(xtrain, ytrain, B1 = 100, B2 = 50, iteration = 0, base = "knn",

cores = 2, criterion = "loo")
fit.logistic <- Rase(xtrain, ytrain, B1 = 100, B2 = 50, iteration = 0,

base = "logistic", cores = 2, criterion = "ric")

We can print the summarized results of RaSE model by calling print function. For instance, we print the
RaSE model with LDA base classifier:
print(fit.lda)

Marginal probabilities:
class 0 class 1
0.49 0.51
Type of base classifiers: lda
Criterion: ric

4

B1: 100
B2: 50
D: 10
Cutoff: 0.4860776
Selected percentage of each feature appearing in B1 subspaces:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
99 21 5 19 49 29 14 8 9 15 23 6 15 11 16 11 18 19 14 18 14 7 23 14 13 9
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
8 17 17 9 9 12 17 9 15 11 8 15 8 13 17 11 9 12 10 9 11 16 16 11

To evaluate the performance of four different models, we calculate the test error on test data:
er.lda <- mean(predict(fit.lda, xtest) != ytest)
er.qda <- mean(predict(fit.qda, xtest) != ytest)
er.knn <- mean(predict(fit.knn, xtest) != ytest)
er.logistic <- mean(predict(fit.logistic, xtest) != ytest)
cat("LDA:", er.lda, "QDA:", er.qda, "knn:", er.knn, "logistic:", er.logistic)

LDA: 0.11 QDA: 0.12 knn: 0.14 logistic: 0.12

And the output of Rase function is an object belonging to S3 class “RaSE”. It contains:

• marginal: the marginal probability for each class.

• base: the type of base classifier.

• criterion: the criterion to choose the best subspace for each weak learner.

• B1: the number of weak learners.

• B2: the number of subspace candidates generated for each weak learner.

• D: the maximal subspace size when generating random subspaces.

• iteration: the number of iterations.

• fit.list: a list of B1 fitted base classifiers.

• cutoff: the empirically optimal threshold.

• subspace: a list of subspaces correponding to B1 weak learners.

• ranking: the selected percentage of each feature in B1 subspaces.

• scale: a list of scaling parameters, including the scaling center and the scale parameter for each feature.

How to Use RaSE for Feature Ranking
The selected percentage of features in B1 subspaces for four RaSE classifiers are contained in the output,
which can be used for feature ranking. We can plot them by using RaPlot function:
library(gridExtra)
plot_lda <- RaPlot(fit.lda)
plot_qda <- RaPlot(fit.qda)
plot_knn <- RaPlot(fit.knn)
plot_logistic <- RaPlot(fit.logistic)

grid.arrange(plot_lda, plot_qda, plot_knn, plot_logistic, ncol = 2)

5

25

50

75

100

0 10 20 30 40 50
feature

se
le

ct
ed

 p
er

ce
nt

ag
e

RaSE−lda

0

25

50

75

0 10 20 30 40 50
feature

se
le

ct
ed

 p
er

ce
nt

ag
e

RaSE−qda

0

25

50

75

0 10 20 30 40 50
feature

se
le

ct
ed

 p
er

ce
nt

ag
e

RaSE−knn

0

25

50

75

100

0 10 20 30 40 50
feature

se
le

ct
ed

 p
er

ce
nt

ag
e

RaSE−logistic

From four figures, it can be noticed that feature 1, 2 and 5 obtain high selected percentage among all p = 50
features under LDA, QDA and kNN models, implying their importance in classification model. We can set a
positive iteration number to increase the selected percentage of three signals among B1 subspaces, which may
improve the performance.

Super RaSE
In RaSE, we consider only a single type of base classifiers (e.g. LDA, QDA, kNN, etc.). Zhu and Feng
(2021) extends the idea of RaSE by combining classifiers of different types. For each of the B1B2 weak
learners, the base classifier type is sampled randomly from some given types with corresponding probabilities.
For iterative super RaSE, not only the feature sampling probability will be updated based on the feature
selected frequencies, but the classifier type sampling probability will be updated according to the type
selected frequencies as well. Note that here the feature sampling probability is updated on the basis of feature
frequencies in the last iteration for corresponding base classifier type. The user can also fix the classifier type
sampling probability. It can be controled by component base.update in parameter super. The super RaSE
will be fitted when the parameter base is a string vector of base classifier types or a numeric probability
vector with classifier type names. In the first case, the base classifier type will be sampled uniformly, while in
the second case, it will be sampled according to the provided probability.

The following example shows how to fit a super RaSE classifier which mixes kNN, LDA and logistic regression.
fit.super <- Rase(xtrain = xtrain, ytrain = ytrain, B1 = 100, B2 = 50,

base = c("knn", "lda", "logistic"), super = list(type = "separate",
base.update = T), criterion = "cv", cv = 5, iteration = 0, cores = 2)

ypred <- predict(fit.super, xtest)
mean(ypred != ytest)

[1] 0.1

We can look at the sampling percentage of each feature from each classifier type and the base classifier type

6

selected percentages.
fit.super$ranking.feature

1 2 3 4 5 6 7
knn 77.50000 47.50000 7.500000 12.500000 20.00000 12.500000 22.500000
lda 86.20690 41.37931 6.896552 13.793103 31.03448 27.586207 6.896552
logistic 93.54839 25.80645 16.129032 9.677419 38.70968 9.677419 9.677419
8 9 10 11 12 13 14
knn 12.500000 10.000000 2.500000 15.000000 12.50000 20.00000 7.500000
lda 10.344828 6.896552 3.448276 17.241379 17.24138 34.48276 13.793103
logistic 3.225806 16.129032 6.451613 9.677419 12.90323 12.90323 9.677419
15 16 17 18 19 20 21
knn 2.50000 10.000000 15.00000 7.50000 17.50000 7.50000 25.00000
lda 10.34483 10.344828 10.34483 17.24138 13.79310 13.79310 10.34483
logistic 19.35484 3.225806 22.58065 12.90323 19.35484 16.12903 16.12903
22 23 24 25 26 27 28
knn 5.00000 2.50000 10.00000 10.000000 20.000000 10.00000 2.500000
lda 13.79310 27.58621 13.79310 17.241379 6.896552 10.34483 24.137931
logistic 19.35484 22.58065 12.90323 3.225806 6.451613 12.90323 6.451613
29 30 31 32 33 34 35
knn 7.500000 5.000000 22.500000 17.500000 7.500000 7.500000 7.50000
lda 3.448276 10.344828 13.793103 13.793103 3.448276 3.448276 10.34483
logistic 6.451613 9.677419 9.677419 6.451613 6.451613 6.451613 12.90323
36 37 38 39 40 41 42
knn 12.500000 5.00000 20.00000 25.000000 7.500000 25.00000 10.00000
lda 6.896552 13.79310 17.24138 13.793103 20.689655 10.34483 10.34483
logistic 12.903226 22.58065 16.12903 6.451613 3.225806 12.90323 16.12903
43 44 45 46 47 48 49
knn 10.000000 17.50000 12.50000 12.500000 12.500000 7.50000 10.000000
lda 13.793103 10.34483 10.34483 10.344828 17.241379 10.34483 3.448276
logistic 9.677419 22.58065 0.00000 3.225806 3.225806 19.35484 3.225806
50
knn 5.00000
lda 13.79310
logistic 12.90323
fit.super$ranking.base

knn lda logistic
40 29 31

Variable Screening via Random Subspace Ensemble
In this section, we describe how to apply RaSE for variable screening.

Introduction
We follow the aforementioned notations. Although Tian and Feng (2021b) only discusses the classification
problem, RaSE framework can be imediately applied for continuous response with no extra effort. As before,
we would like to select B1 subspaces {Sj∗}B1

j=1, for each of which B2 candidate subspaces {Sjk}B2
k=1 are

generated. Some specific criterion is required for subspace selection. The selected percentage of features in
{Sj∗}B1

j=1 can be used for variable screening (Tian and Feng (2021a)).

7

Variable screening via RaSE
We will present how to do variable screening through RaSE framework in this section. First we generate the
data from the following model (model 1 in Tian and Feng (2021b), model II in Fan and Lv (2008)).

y = 5x1 + 5x5 + 5x3 −
15√

2
x4 + ε,

where x = (x1, . . . , xp)T ∼ N(0,Σ), Σ = (σij)p×p, σij = 0.51(i6=j), ε ∼ N(0, 1), and ε ⊥⊥ x. The signal set
S∗ = {1, 2, 3, 4}.

Let n = 100 and p = 100. Call function RaModel to generate the data.
train.data <- RaModel("screening", 1, n = 100, p = 100)
xtrain <- train.data$x
ytrain <- train.data$y

As Tian and Feng (2021b) describes, here x4 is marginally independent of y. We first apply RaSE equipped
with linear regression model and BIC by calling function RaScreen. Set B1 = B2 = 100, model = lm and
criterion = bic. To demonstrate the power of iterations, we set iteration = 1.
fit.bic <- RaScreen(xtrain, ytrain, B1 = 100, B2 = 100, model = "lm", criterion = "bic",

cores = 2, iteration = 1)

The output of RaScreen is a list including the selected percentage of variables, the model we use and
other information. Note that the selected percentage of variables are stored in a list (when iteration =
0, it is a vector) called “selected.perc”. All results from different iteration rounds are available. Function
RaRank provides a convenient and automatic way to select variables from the output of RaScreen. We set
selected.num = n/logn to select [n/ logn] = 21 variables. Let’s compare the results from vanilla RaSE (no
iteration) and RaSE with 1 interation round as follows.
RaRank(fit.bic, selected.num = "n/logn", iteration = 0)

[1] 1 2 3 27 4 15 11 49 65 12 40 43 55 63 75 83 24 30 52 60 90
RaRank(fit.bic, selected.num = "n/logn", iteration = 1)

[1] 1 2 4 3 27 30 12 20 83 94 75 91 36 43 49 61 78 11 63 65 14

Observe that RaSE with linear regression model and BIC captures the signals very well. Interation indeed
improves vanilla RaSE by ranking four signals on the top.

Note that there could be some variables with zero selected percentage, especially in iterative RaSE. In this
case, such variables are indistinguishable. When the user requests more variables beyond the number of
variables with positive selected percentages, RaRank function will randomly sample from variables with zero
selected percentage and pop up a warning message as below.
RaRank(fit.bic, selected.num = "n-1", iteration = 1)

Warning in RaRank(fit.bic, selected.num = "n-1", iteration = 1): Only 86
variables have positive selected percentage but request 99 ones. The last 13
variables are randomly sampled!

[1] 1 2 4 3 27 30 12 20 83 94 75 91 36 43 49 61 78 11 63
[20] 65 14 15 35 52 18 40 44 60 72 81 84 5 24 67 70 71 73 37
[39] 41 48 53 54 55 90 92 96 97 22 29 42 64 77 87 93 98 6 10
[58] 13 16 19 25 26 34 47 50 68 69 76 80 82 85 99 9 23 32 39
[77] 45 46 57 58 62 95 100 33 38 89 31 66 8 59 7 56 88 28 79
[96] 74 17 21 86

8

Reference
Chen, Jiahua, and Zehua Chen. 2008. “Extended Bayesian Information Criteria for Model Selection with
Large Model Spaces.” Biometrika 95 (3): 759–71.

———. 2012. “Extended Bic for Small-N-Large-P Sparse Glm.” Statistica Sinica, 555–74.

Fan, Jianqing, and Jinchi Lv. 2008. “Sure Independence Screening for Ultrahigh Dimensional Feature Space.”
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70 (5): 849–911.

Mai, Qing, Hui Zou, and Ming Yuan. 2012. “A Direct Approach to Sparse Discriminant Analysis in Ultra-High
Dimensions.” Biometrika 99 (1): 29–42.

Tian, Ye, and Yang Feng. 2021a. “RaSE: A Variable Screening Framework via Random Subspace Ensembles.”
Journal of the American Statistical Association, nos. just-accepted: 1–30.

———. 2021b. “RaSE: Random Subspace Ensemble Classification.” Journal of Machine Learning Research 22
(45): 1–93.

Zhu, Jianan, and Yang Feng. 2021. “Super Rase: Super Random Subspace Ensemble Classification.”
https://www.preprints.org/manuscript/202110.0042.

9

https://www.preprints.org/manuscript/202110.0042

	Random Subspace Ensemble Classification
	Introduction
	Installation
	How to Fit a RaSE Classifier for Prediction
	How to Use RaSE for Feature Ranking
	Super RaSE

	Variable Screening via Random Subspace Ensemble
	Introduction
	Variable screening via RaSE
	Reference

