
Package ‘RPatternJoin’
January 20, 2025

Type Package

Title String Similarity Joins for Hamming and Levenshtein Distances

Version 1.0.0

Date 2024-10-11

Description This project is a tool for words edit similarity joins (a.k.a. all-
pairs similarity search) under small (< 3) edit distance constraints.
It works for Levenshtein/Hamming distances and words from any alphabet.
The software was originally developed for joining amino-
acid/nucleotide sequences from Adaptive Immune Repertoires,
where the number of words is relatively large (10^5-
10^6) and the average length of words is relatively small (10-100).

License MIT + file LICENSE

Suggests Matrix, testthat, stringdist

Imports Rcpp (>= 1.0.13), stats

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.3.2

Language en-US

NeedsCompilation yes

Author Daniil Matveev [aut, cre],
Martin Leitner-Ankerl [ctb, cph],
Gene Harvey [ctb, cph]

Maintainer Daniil Matveev <dmatveev@sfsu.edu>

Repository CRAN

Date/Publication 2024-10-25 07:30:10 UTC

Contents
RPatternJoin-package . 2
edit_dist1_example . 3
similarityJoin . 4

Index 7

1

2 RPatternJoin-package

RPatternJoin-package String Similarity Joins for Hamming and Levenshtein Distances

Description

This project is a tool for words edit similarity joins under small (< 3) edit distance constraints. It
works for Levenshtein distance and Hamming (with allowed insertions/deletions to the end) dis-
tance.

Details

The package offers several similarity join algorithms, all of which can be accessed through the
similarityJoin function. The software was originally developed for edit similarity joins of short
amino-acid/nucleotide sequences from Adaptive Immune Repertoires, where the number of words
is relatively large (105 − 106) and the average length of words is relatively small (10 − 100). The
algorithms will work with any alphabet and any list of words, however, larger lists or word sizes
can lead to memory issues.

Author(s)

Daniil Matveev <dmatveev@sfsu.edu>

See Also

similarityJoin, edit_dist1_example

Examples

library(RPatternJoin)

Small example

similarityJoin(c("ABC", "AX", "QQQ"), 2, "Hamming", output_format = "adj_pairs")
[,1] [,2]
[1,] 1 1
[2,] 1 2
[3,] 2 1
[4,] 2 2
[5,] 3 3

Larger example

The `edit_dist1_example` function generate a random list
of `num_strings` strings with the average string length=`avg_len`.
strings <- edit_dist1_example(avg_len = 25, num_strings = 5000)

Firstly let's do it with `stringdist` package.

edit_dist1_example 3

library(stringdist)
unname(system.time({

which(stringdist::stringdistmatrix(strings, strings, "lv") <= 1, arr.ind = TRUE)
})["elapsed"])
Runtime on macOS machine with 2.2 GHz i7 processor and 16GB of DDR4 RAM:
[1] 63.773

Now let's do it with similarityJoin function.
unname(system.time({

similarityJoin(strings, 1, "Levenshtein", output_format = "adj_pairs")
})["elapsed"])
Runtime on the same machine:
[1] 0.105

edit_dist1_example Generate Example Strings with Edit Distance 1

Description

This function generates a random list of num_strings = 5n strings such that each of n strings has
one duplicate, one string with a deleted letter, one string with an inserted letter, and one string with
a substituted letter.

Usage

edit_dist1_example(avg_len = 25, num_strings = 5000)

Arguments

avg_len Average length of the strings.

num_strings Number of strings to generate.

Value

A character vector of generated strings.

See Also

similarityJoin

4 similarityJoin

similarityJoin Build Adjacency Matrix

Description

Build Adjacency Matrix

Usage

similarityJoin(
strings,
cutoff,
metric,
method = "partition_pattern",
drop_deg_one = FALSE,
special_chars = TRUE,
output_format = "adj_matrix"

)

Arguments

strings Input vector of strings. To avoid hidden errors, the function will give a warning
if strings contain characters not in the English alphabet. To disable this warning,
change special_chars to FALSE.

cutoff Cutoff: 0,1,2. The function will search all pairs of strings with edit distance less
than or equal to the cutoff.

metric Edit distance type: Hamming, Levenshtein.

method Method: partition_pattern, semi_pattern, pattern. This parameter deter-
mines what algorithm will be used for similarity join. Methods will differ in time
and space complexity, but produce the same output. By default, we recommend
using partition_pattern, since it is the most memory efficient.

drop_deg_one Drop isolated strings: TRUE, FALSE. Works only for output_format=adj_matrix.
The default is FALSE.

special_chars Enable check for special characters in strings: TRUE, FALSE. The default is TRUE.

output_format Output format: adj_matrix, adj_pairs. The default is adj_matrix.

Value

If output_format = adj_pairs - 2-column matrix where each row is a pair of indices of strings
with an edit distance ≤ cutoff.
If output_format = adj_matrix - the same output is presented as a sparse adjacency matrix with
corresponding strings and their indices in the original vector are stored in dimnames of the adja-
cency matrix.
I.e. (adj_matrix[i, j]=1) ⇔ distance between dimnames(adj_matrix)[[1]][i] and dimnames(adj_matrix)[[1]][i]
is ≤ cutoff.

similarityJoin 5

If drop_deg_one is FALSE, then dimnames(adj_matrix)[[1]] = strings and dimnames(adj_matrix)[[2]]=1:length(strings).
Otherwise, dimnames(adj_matrix)[[1]] = strings without isolated strings and dimnames(adj_matrix)[[2]]=original
indices of strings in dimnames(adj_matrix)[[1]] (original = index in input strings vector).

See Also

edit_dist1_example

Examples

library(RPatternJoin)
library(Matrix)

Example 1
Consider the following example with small similar words:
strings <- c("cat", "ecast", "bat", "cats", "chat")
Let's find all pairs s.t. strings can be modified
to each other with at most 2 substitutions.
For this we choose our metric to be Hamming distance and cutoff to be 2.
metric <- "Hamming"
cutoff <- 2
By default we use 'partition_pattern' method
since it is the most memory efficient.
method <- "partition_pattern"
Let's output the result as an adjacency matrix.
output_format <- "adj_matrix"
drop_deg_one <- TRUE

similarityJoin(
strings, cutoff, metric,
method = method, drop_deg_one = drop_deg_one)

3 x 3 sparse Matrix of class "dgCMatrix"
cat bat cats
1 1 1 1
3 1 1 1
4 1 1 1

Example 2
On the same strings, let's calculate pairs of strings with edit distance \eqn{\leq} 1.
cutoff <- 1
metric <- "Levenshtein"
Let's output the result as an adjacency matrix, but drop strings without any connections.
drop_deg_one <- FALSE

similarityJoin(
strings, cutoff, metric,
method = method, drop_deg_one = drop_deg_one)

cat ecast bat cats chat
1 1 . 1 1 1
2 . 1 . . .
3 1 . 1 . .

6 similarityJoin

4 1 . . 1 .
5 1 . . . 1

Example 3
Now let's simulate a larger example.

The `edit_dist1_example` function generate a random list
of `num_strings` strings with the average string length=`avg_len`.
strings <- edit_dist1_example(avg_len = 25, num_strings = 5000)

Firstly let's do it with `stringdist` package.

library(stringdist)
system.time({

which(stringdist::stringdistmatrix(strings, strings, "lv") <= 1, arr.ind = TRUE)
})["elapsed"]
Runtime on macOS machine with 2.2 GHz i7 processor and 16GB of DDR4 RAM:
elapsed
63.773

Now let's do it with similarityJoin function.
system.time({

similarityJoin(strings, 1, "Levenshtein", output_format = "adj_pairs")
})["elapsed"]
Runtime on the same machine:
elapsed
0.105

Index

∗ package
RPatternJoin-package, 2

edit_dist1_example, 2, 3, 5

RPatternJoin (RPatternJoin-package), 2
RPatternJoin-package, 2

similarityJoin, 2, 3, 4

7

	RPatternJoin-package
	edit_dist1_example
	similarityJoin
	Index

