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R2BayesX-package Estimate STAR Models with BayesX

Description

This package interfaces the BayesX (https://www.uni-goettingen.de/de/bayesx/550513.html)
command-line binary from R. The main model fitting function is called bayesx.

Before STAR models can be estimated, the command-line version of BayesX needs to be installed,
which is done by installing the R source code package BayesXsrc. Please see function bayesx and
bayesx.control for more details on model fitting and controlling.

The package also provides functionality for high level graphics of estimated effects, see function
plot.bayesx, plot2d, plot3d, plotblock, plotmap, plotsamples and colorlegend.

More standard extractor functions and methods for the fitted model objects may be applied, e.g.,
see function summary.bayesx, fitted.bayesx, residuals.bayesx, samples, plot.bayesx, as
well as AIC, BIC etc., please see the examples of the help sites. Predictions for new data based on
refitting with weights can be obtained by function predict.bayesx.

In addition, it is possible to run arbitrary BayesX program files using function run.bayesx. BayesX
output files that are stored in a directory may be read into R calling function read.bayesx.output.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

Examples

## to see the package demos
demo(package = "R2BayesX")

add.neighbor Add Neighborhood Relations

Description

Adds a neighborhhod relationship between two given regions to a map object in graph format.

Usage

add.neighbor(map, region1, region2)

Arguments

map map object in graph format that should be modified.
region1, region2

character, names of the regions that should be connected as neighbors.

https://www.uni-goettingen.de/de/bayesx/550513.html
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Value

Returns an adjacency matrix that represents the neighborhood structure of map plus the new neigh-
borhood relation in graph format.

Author(s)

Felix Heinzl, Thomas Kneib.

See Also

get.neighbor, delete.neighbor, read.gra, write.gra, bnd2gra.

Examples

## read the graph file
file <- file.path(find.package("R2BayesX"), "examples", "Germany.gra")
germany <- read.gra(file)

## add some neighbors
get.neighbor(germany, c("1001", "7339"))
germany <- add.neighbor(germany, "7339", "1001")
get.neighbor(germany, c("1001", "7339"))

bayesx Estimate STAR Models with BayesX

Description

This is the documentation of the main model fitting function of the interface. Within function
bayesx, three inferential concepts are available for estimation: Markov chain Monte Carlo simu-
lation (MCMC), estimation based on mixed model technology and restricted maximum likelihood
(REML), and a penalized least squares (respectively penalized likelihood) approach for estimating
models using model selection tools (STEP).

Usage

bayesx(formula, data, weights = NULL, subset = NULL,
offset = NULL, na.action = NULL, contrasts = NULL,
control = bayesx.control(...), model = TRUE,
chains = NULL, cores = NULL, ...)

Arguments

formula symbolic description of the model (of type y ~ x), also see sx, formula.gam and
s.
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data a data.frame or list containing the model response variable and covariates re-
quired by the formula. By default the variables are taken from environment(formula):
typically the environment from which bayesx is called. Argument data may
also be a character string defining the directory the data is stored, where the first
row in the data set must contain the variable names and columns should be tab
separated. Using this option will avoid loading the complete data into R, only
the BayesX output files will be imported, which might be helpful using large
datasets.

weights prior weights on the data.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

offset can be used to supply a model offset for use in fitting.

na.action a function which indicates what should happen when the data contain NA’s. The
default is set by the na.action setting of options, and is na.omit if set to
NULL.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

control specify several global control parameters for bayesx, see bayesx.control.

model a logical value indicating whether model.frame should be included as a com-
ponent of the returned value.

chains integer. The number of sequential chains that should be run, the default is one
chain if chains = NULL. For each chain a separate seed for the random number
generator is used. The return value of bayesx is a list of class "bayesx", i.e.
each list element represents a seperate model, for which the user can e.g. apply
all plotting methods or extractor functions. Convergence diagnostics can then
be computed using function GRstats.

cores integer. How many cores should be used? The default is one core if cores =
NULL. The return value is again a list of class "bayesx", for which all plotting
and extractor functions can be applied, see argument chains. Note that this
option is not available on Windows systems, see the documentation of function
mclapply.

... arguments passed to bayesx.control, e.g. family and method, defaults are
family = "gaussian", method = "MCMC".

Details

In BayesX, estimation of regression parameters is based on three inferential concepts:

Full Bayesian inference via MCMC: A fully Bayesian interpretation of structured additive regres-
sion models is obtained by specifying prior distributions for all unknown parameters. Estimation
can be facilitated using Markov chain Monte Carlo simulation techniques. BayesX provides nu-
merically efficient implementations of MCMC schemes for structured additive regression models.
Suitable proposal densities have been developed to obtain rapidly mixing, well-behaved sampling
schemes without the need for manual tuning.

Inference via a mixed model representation: The other concept used for estimation is based on
mixed model methodology. Within BayesX this concept has been extended to structured additive
regression models and several types of non-standard regression situations. The general idea is to
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take advantage of the close connection between penalty concepts and corresponding random effects
distributions. The smoothing parameters of the penalties then transform to variance components in
the random effects (mixed) model. While the selection of smoothing parameters has been a diffi-
cult task for a long time, several estimation procedures for variance components in mixed models
are already available since the 1970’s. The most popular one is restricted maximum likelihood
in Gaussian mixed models with marginal likelihood as the non-Gaussian counterpart. While re-
gression coefficients are estimated based on penalized likelihood, restricted maximum likelihood
or marginal likelihood estimation forms the basis for the determination of smoothing parameters.
From a Bayesian perspective, this yields empirical Bayes/posterior mode estimates for the struc-
tured additive regression models. However, estimates can also merely be interpreted as penalized
likelihood estimates from a frequentist perspective.

Penalized likelihood including variable selection: As a third alternative BayesX provides a pe-
nalized least squares (respectively penalized likelihood) approach for estimating structured additive
regression models. In addition, a powerful variable and model selection tool is included. Model
choice and estimation of the parameters is done simultaneously. The algorithms are able to

• decide whether a particular covariate enters the model,

• decide whether a continuous covariate enters the model linearly or nonlinearly,

• decide whether a spatial effect enters the model,

• decide whether a unit- or cluster specific heterogeneity effect enters the model

• select complex interaction effects (two dimensional surfaces, varying coefficient terms)

• select the degree of smoothness of nonlinear covariate, spatial or cluster specific heterogeneity
effects.

Inference is based on penalized likelihood in combination with fast algorithms for selecting relevant
covariates and model terms. Different models are compared via various goodness of fit criteria, e.g.
AIC, BIC, GCV and 5 or 10 fold cross validation.

Within the model fitting function bayesx, the different inferential concepts may be chosen by argu-
ment method of function bayesx.control. Options are "MCMC", "REML" and "STEP".

The wrapper function bayesx basically starts by setting up the necessary BayesX program file
using function bayesx.construct, parse.bayesx.input and write.bayesx.input. Afterwards
the generated program file is send to the command-line binary executable version of BayesX with
run.bayesx. As a last step, function read.bayesx.output will read the estimated model object
returned from BayesX back into R.

For estimation of STAR models, function bayesx uses formula syntax as provided in package mgcv
(see formula.gam), i.e., models may be specified using the R2BayesX main model term constructor
functions sx or the mgcv constructor functions s. For a detailed description of the model formula
syntax used within bayesx models see also bayesx.construct and bayesx.term.options.

After the BayesX binary has successfully finished processing an object of class "bayesx" is re-
turned, wherefore a set of standard extractor functions and methods is available, including methods
to the generic functions print, summary, plot, residuals and fitted.

See fitted.bayesx, plot.bayesx, and summary.bayesx for more details on these methods.

Value

A list of class "bayesx", see function read.bayesx.output.
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WARNINGS

For geographical effects, note that BayesX may crash if the region identification covariate is a
factor, it is recommended to code these variables as integer, please see the example below.

Note

If a model is specified with a structured and an unstructured spatial effect, e.g. the model formula
is something like y ~ sx(id, bs = "mrf", map = MapBnd) + sx(id, bs = "re"), the model output
contains of one additional total spatial effect, named with "sx(id):total". Also see the last
example.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

References

Belitz C, Brezger A, Kneib T, Lang S (2011). BayesX - Software for Bayesian Inference in Struc-
tured Additive Regression Models. Version 2.0.1. URL https://www.uni-goettingen.de/de/
bayesx/550513.html.

Belitz C, Lang S (2008). Simultaneous selection of variables and smoothing parameters in struc-
tured additive regression models. Computational Statistics & Data Analysis, 53, 61–81.

Brezger A, Kneib T, Lang S (2005). BayesX: Analyzing Bayesian Structured Additive Regression
Models. Journal of Statistical Software, 14(11), 1–22. URL https://www.jstatsoft.org/v14/
i11/.

Brezger A, Lang S (2006). Generalized Structured Additive Regression Based on Bayesian P-
Splines. Computational Statistics & Data Analysis, 50, 947–991.

Fahrmeir L, Kneib T, Lang S (2004). Penalized Structured Additive Regression for Space Time
Data: A Bayesian Perspective. Statistica Sinica, 14, 731–761.

Umlauf N, Adler D, Kneib T, Lang S, Zeileis A (2015). Structured Additive Regression Models: An
R Interface to BayesX. Journal of Statistical Software, 63(21), 1–46. https://www.jstatsoft.
org/v63/i21/

See Also

parse.bayesx.input, write.bayesx.input, run.bayesx, read.bayesx.output, summary.bayesx,
plot.bayesx, fitted.bayesx, bayesx.construct, bayesx.term.options, sx, formula.gam, s.

Examples

## generate some data
set.seed(111)
n <- 200

## regressor
dat <- data.frame(x = runif(n, -3, 3))

## response

https://www.uni-goettingen.de/de/bayesx/550513.html
https://www.uni-goettingen.de/de/bayesx/550513.html
https://www.jstatsoft.org/v14/i11/
https://www.jstatsoft.org/v14/i11/
https://www.jstatsoft.org/v63/i21/
https://www.jstatsoft.org/v63/i21/
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dat$y <- with(dat, 1.5 + sin(x) + rnorm(n, sd = 0.6))

## estimate models with
## bayesx REML and MCMC
b1 <- bayesx(y ~ sx(x), method = "REML", data = dat)

## same using mgcv syntax
b1 <- bayesx(y ~ s(x, bs = "ps", k = 20), method = "REML", data = dat)

## now with MCMC
b2 <- bayesx(y ~ sx(x), method = "MCMC",

iter = 1200, burnin = 200, data = dat)

## compare reported output
summary(c(b1, b2))

## plot the effect for both models
plot(c(b1, b2), residuals = TRUE)

## use confint
confint(b1, level = 0.99)
confint(b2, level = 0.99)

## Not run:
## more examples
set.seed(111)
n <- 500

## regressors
dat <- data.frame(x = runif(n, -3, 3), z = runif(n, -3, 3),

w = runif(n, 0, 6), fac = factor(rep(1:10, n/10)))

## response
dat$y <- with(dat, 1.5 + sin(x) + cos(z) * sin(w) +

c(2.67, 5, 6, 3, 4, 2, 6, 7, 9, 7.5)[fac] + rnorm(n, sd = 0.6))

## estimate models with
## bayesx MCMC and REML
## and compare with
## mgcv gam()
b1 <- bayesx(y ~ sx(x) + sx(z, w, bs = "te") + fac,

data = dat, method = "MCMC")
b2 <- bayesx(y ~ sx(x) + sx(z, w, bs = "te") + fac,

data = dat, method = "REML")
b3 <- gam(y ~ s(x, bs = "ps") + te(z, w, bs = "ps") + fac,

data = dat)

## summary statistics
summary(b1)
summary(b2)
summary(b3)

## plot the effects
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op <- par(no.readonly = TRUE)
par(mfrow = c(3, 2))
plot(b1, term = "sx(x)")
plot(b1, term = "sx(z,w)")
plot(b2, term = "sx(x)")
plot(b2, term = "sx(z,w)")
plot(b3, select = 1)
vis.gam(b3, c("z","w"), theta = 40, phi = 40)
par(op)

## combine models b1 and b2
b <- c(b1, b2)

## summary
summary(b)

## only plot effect 2 of both models
plot(b, term = "sx(z,w)")

## with residuals
plot(b, term = "sx(z,w)", residuals = TRUE)

## same model with kriging
b <- bayesx(y ~ sx(x) + sx(z, w, bs = "kr") + fac,

method = "REML", data = dat)
plot(b)

## now a mrf example
## note: the regional identification
## covariate and the map regionnames
## should be coded as integer
set.seed(333)

## simulate some geographical data
data("MunichBnd")
N <- length(MunichBnd); n <- N*5

## regressors
dat <- data.frame(x1 = runif(n, -3, 3),

id = as.factor(rep(names(MunichBnd), length.out = n)))
dat$sp <- with(dat, sort(runif(N, -2, 2), decreasing = TRUE)[id])

## response
dat$y <- with(dat, 1.5 + sin(x1) + sp + rnorm(n, sd = 1.2))

## estimate models with
## bayesx MCMC and REML
b1 <- bayesx(y ~ sx(x1) + sx(id, bs = "mrf", map = MunichBnd),

method = "MCMC", data = dat)
b2 <- bayesx(y ~ sx(x1) + sx(id, bs = "mrf", map = MunichBnd),

method = "REML", data = dat)
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## summary statistics
summary(b1)
summary(b2)

## plot the spatial effects
plot(b1, term = "sx(id)", map = MunichBnd,

main = "bayesx() MCMC estimate")
plot(b2, term = "sx(id)", map = MunichBnd,

main = "bayesx() REML estimate")
plotmap(MunichBnd, x = dat$sp, id = dat$id,

main = "Truth")

## try geosplines instead
b <- bayesx(y ~ sx(id, bs = "gs", map = MunichBnd) + sx(x1), data = dat)
summary(b)
plot(b, term = "sx(id)", map = MunichBnd)

## geokriging
b <- bayesx(y ~ sx(id, bs = "gk", map = MunichBnd) + sx(x1),

method = "REML", data = dat)
summary(b)
plot(b, term = "sx(id)", map = MunichBnd)

## perspective plot of the effect
plot(b, term = "sx(id)")

## image and contour plot
plot(b, term = "sx(id)", image = TRUE,

contour = TRUE, grid = 200)

## model with random effects
set.seed(333)
N <- 30
n <- N*10

## regressors
dat <- data.frame(id = sort(rep(1:N, n/N)), x1 = runif(n, -3, 3))
dat$re <- with(dat, rnorm(N, sd = 0.6)[id])

## response
dat$y <- with(dat, 1.5 + sin(x1) + re + rnorm(n, sd = 0.6))

## estimate model
b <- bayesx(y ~ sx(x1) + sx(id, bs = "re"), data = dat)
summary(b)
plot(b)

## extract estimated random effects
## and compare with true effects
plot(fitted(b, term = "sx(id)")$Mean ~ unique(dat$re))
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## now a spatial example
## with structured and
## unstructered spatial
## effect
set.seed(333)

## simulate some geographical data
data("MunichBnd")
N <- length(MunichBnd); names(MunichBnd) <- 1:N
n <- N*5

## regressors
dat <- data.frame(id = rep(1:N, n/N), x1 = runif(n, -3, 3))
dat$sp <- with(dat, sort(runif(N, -2, 2), decreasing = TRUE)[id])
dat$re <- with(dat, rnorm(N, sd = 0.6)[id])

## response
dat$y <- with(dat, 1.5 + sin(x1) + sp + re + rnorm(n, sd = 0.6))

## estimate model
b <- bayesx(y ~ sx(x1) +

sx(id, bs = "mrf", map = MunichBnd) +
sx(id, bs = "re"), method = "MCMC", data = dat)

summary(b)

## plot all spatial effects
plot(b, term = "sx(id):mrf", map = MunichBnd,

main = "Structured spatial effect")
plot(b, term = "sx(id):re", map = MunichBnd,

main = "Unstructured spatial effect")
plot(b, term = "sx(id):total", map = MunichBnd,

main = "Total spatial effect", digits = 4)

## some experiments with the
## stepwise algorithm
## generate some data
set.seed(321)
n <- 1000

## regressors
dat <- data.frame(x1 = runif(n, -3, 3), x2 = runif(n),

x3 = runif(n, 3, 6), x4 = runif(n, 0, 1))

## response
dat$y <- with(dat, 1.5 + sin(x1) + 0.6 * x2 + rnorm(n, sd = 0.6))

## estimate model with STEP
b <- bayesx(y ~ sx(x1) + sx(x2) + sx(x3) + sx(x4),

method = "STEP", algorithm = "cdescent1", CI = "MCMCselect",
iter = 10000, step = 10, data = dat)

summary(b)
plot(b)
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## a probit example
set.seed(111)
n <- 1000
dat <- data.frame(x <- runif(n, -3, 3))

dat$z <- with(dat, sin(x) + rnorm(n))
dat$y <- rep(0, n)
dat$y[dat$z > 0] <- 1

b <- bayesx(y ~ sx(x), family = "binomialprobit", data = dat)
summary(b)
plot(b)

## estimate varying coefficient models
set.seed(333)
n <- 1000
dat <- data.frame(x = runif(n, -3, 3), id = factor(rep(1:4, n/4)))

## response
dat$y <- with(dat, 1.5 + sin(x) * c(-1, 0.2, 1, 5)[id] + rnorm(n, sd = 0.6))

## estimate model
b <- bayesx(y ~ sx(x, by = id, center = TRUE),

method = "REML", data = dat)
summary(b)
plot(b, resid = TRUE, cex.resid = 0.1)

## End(Not run)

bayesx.construct Construct BayesX Model Term Objects

Description

The function bayesx.construct is used to provide a flexible framework to implement new model
term objects in bayesx within the BayesX syntax.

Usage

bayesx.construct(object, dir, prg, data)

Arguments

object is a smooth, shrinkage or random specification object in a STAR formula, gen-
erated by the R2BayesX model term constructor functions sx (or using the con-
structor functions s and te of the mgcv package). Objects generated by these
functions have class "xx.smooth.spec" where "xx" is determined by the "bs"
argument of sx (and s).
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dir character, a directory where possible data should be stored, e.g. in bayesx
models, if bs = "gk", bs = "gs" or bs = "mrf" is choosen, the corresponding
map will be written as a "bnd" or "gra" file (see read.bnd and read.gra) to
this directory, so BayesX can use this spatial object for estimation.

prg if additional data handling must be applied, e.g. storing maps ("bnd") objects
in the directory specified in dir, write.bayesx.input needs to write the extra
commands in a program file provided with argument prg, i.e. this may all be
handled within a bayesx.construct constructor function.

data if additional data is needed to setup the BayesX term it is found here.

Details

The main idea of these constructor functions is to provide a flexible framework to implement
new model term objects in the BayesX syntax within bayesx, i.e. for any smooth or random
term in R2BayesX a constructor function like bayesx.construct.ps.smooth.construct may
be provided to translate R specific syntax into BayesX readable commands. During process-
ing with write.bayesx.input each model term is constructed with bayesx.construct after an-
other, wrapped into a full formula, which may then be send to the BayesX binary with function
run.bayesx.

At the moment the following model terms are implemented:

• "rw1", "rw2": Zero degree P-splines: Defines a zero degree P-spline with first or second order
difference penalty. A zero degree P-spline typically estimates for every distinct covariate value
in the dataset a separate parameter. Usually there is no reason to prefer zero degree P-splines
over higher order P-splines. An exception are ordinal covariates or continuous covariates with
only a small number of different values. For ordinal covariates higher order P-splines are
not meaningful while zero degree P-splines might be an alternative to modeling nonlinear
relationships via a dummy approach with completely unrestricted regression parameters.

• "season": Seasonal effect of a time scale.

• "ps", "psplinerw1", "psplinerw2": P-spline with first or second order difference penalty.

• "te", "pspline2dimrw1": Defines a two-dimensional P-spline based on the tensor product
of one-dimensional P-splines with a two-dimensional first order random walk penalty for the
parameters of the spline.

• "kr", "kriging": Kriging with stationary Gaussian random fields.

• "gk", "geokriging": Geokriging with stationary Gaussian random fields: Estimation is
based on the centroids of a map object provided in boundary format (see function read.bnd
and shp2bnd) as an additional argument named map within function sx, or supplied within
argument xt when using function s, e.g., xt = list(map = MapBnd).

• "gs", "geospline": Geosplines based on two-dimensional P-splines with a two-dimensional
first order random walk penalty for the parameters of the spline. Estimation is based on the
coordinates of the centroids of the regions of a map object provided in boundary format (see
function read.bnd and shp2bnd) as an additional argument named map (see above).

• "mrf", "spatial": Markov random fields: Defines a Markov random field prior for a spatial
covariate, where geographical information is provided by a map object in boundary or graph
file format (see function read.bnd, read.gra and shp2bnd), as an additional argument named
map (see above).
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• "bl", "baseline": Nonlinear baseline effect in hazard regression or multi-state models: De-
fines a P-spline with second order random walk penalty for the parameters of the spline for
the log-baseline effect log(λ(time)).

• "factor": Special BayesX specifier for factors, especially meaningful if method = "STEP",
since the factor term is then treated as a full term, which is either included or removed from
the model.

• "ridge", "lasso", "nigmix": Shrinkage of fixed effects: defines a shrinkage-prior for the
corresponding parameters γj , j = 1, . . . , q, q ≥ 1 of the linear effects x1, . . . , xq . There are
three priors possible: ridge-, lasso- and Normal Mixture of inverse Gamma prior.

• "re": Gaussian i.i.d.\ Random effects of a unit or cluster identification covariate.

See function sx for a description of the main R2BayesX model term constructor functions.

Value

The model term syntax used within BayesX as a character string.

WARNINGS

If new bayesx.construct functions are implemented in future work, there may occur problems
with reading the corresponding BayesX output files with read.bayesx.output, e.g., if the new ob-
jects do not have the structure as implemented with bs = "ps" etc., i.e. function read.bayesx.output
must also be adapted in such cases.

Note

Using sx additional controlling arguments may be supplied within the dot dot dot “...” argument.
Please see the help site for function bayesx.term.options for a detailed description of possible
optional parameters.

Within the xt argument in function s, additional BayesX specific parameters may be also supplied,
see the examples below.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

sx, bayesx.term.options, s, formula.gam, read.bnd, read.gra.

Examples

bayesx.construct(sx(x1, bs = "ps"))
bayesx.construct(sx(x1, x2, bs = "te"))

## now create BayesX syntax for smooth terms
## using mgcv constructor functions
bayesx.construct(s(x1, bs = "ps"))

## for tensor product P-splines,
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bayesx.construct(s(x1, x2, bs = "te"))

## increase number of knots
## for a P-spline
bayesx.construct(sx(x1, bs = "ps", nrknots = 40))

## now with degree 2 and
## penalty order 1
bayesx.construct(sx(x1, bs = "ps", knots = 40, degree = 2, order = 1))
bayesx.construct(s(x1, bs = "ps", k = 41, m = c(0, 1)))

## random walks
bayesx.construct(sx(x1, bs = "rw1"))
bayesx.construct(sx(x1, bs = "rw2"))

## shrinkage priors
bayesx.construct(sx(x1, bs = "lasso"))
bayesx.construct(sx(x1, bs = "ridge"))
bayesx.construct(sx(x1, bs = "nigmix"))

## for cox models, baseline
bayesx.construct(sx(time, bs = "bl"))

## kriging
bayesx.construct(sx(x, z, bs = "kr"))

## seasonal
bayesx.construct(sx(x, bs = "season"))

## factors
bayesx.construct(sx(id, bs = "factor"))

## now with some geographical information
## note: maps must be either supplied in
## 'bnd' or 'gra' format, also see function
## read.bnd() or read.gra()
data("MunichBnd")
bayesx.construct(sx(id, bs = "mrf", map = MunichBnd))

## same with
bayesx.construct(s(id, bs = "mrf", xt = list(map = MunichBnd)))

bayesx.construct(sx(id, bs = "gk", map = MunichBnd))
bayesx.construct(sx(id, bs = "gs", map = MunichBnd))

## also vary number of knots
bayesx.construct(sx(id, bs = "gs", knots = 10, map = MunichBnd))
bayesx.construct(s(id, bs = "gs", k = 12, m = c(1, 1), xt = list(map = MunichBnd)))

## random effects
bayesx.construct(sx(id, bs = "re"))
bayesx.construct(sx(id, bs = "re", by = x1))
bayesx.construct(sx(id, bs = "re", by = x1, xt = list(nofixed=TRUE)))
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## generic
## specifies some model term
## and sets all additional arguments
## within argument xt
## only for experimental use
bayesx.construct(sx(x, bs = "generic", dosomething = TRUE, a = 1, b = 2))

bayesx.control Control Parameters for BayesX

Description

Various parameters that control fitting of regression models using bayesx.

Usage

bayesx.control(model.name = "bayesx.estim",
family = "gaussian", method = "MCMC", verbose = FALSE,
dir.rm = TRUE, outfile = NULL, replace = FALSE, iterations = 12000L,
burnin = 2000L, maxint = NULL, step = 10L, predict = TRUE,
seed = NULL, hyp.prior = NULL, distopt = NULL, reference = NULL,
zipdistopt = NULL, begin = NULL, level = NULL, eps = 1e-05,
lowerlim = 0.001, maxit = 400L, maxchange = 1e+06, leftint = NULL,
lefttrunc = NULL, state = NULL, algorithm = NULL, criterion = NULL,
proportion = NULL, startmodel = NULL, trace = NULL,
steps = NULL, CI = NULL, bootstrapsamples = NULL, ...)

Arguments

model.name character, specify a base name model output files are named with in outfile.

family character, specify the distribution used for the model, options for all methods,
"MCMC", "REML" and "STEP" are: "binomial", "binomialprobit", "gamma",
"gaussian", "multinomial", "poisson". For "MCMC" and "REML" only: "cox",
"cumprobit" and "multistate". For "REML" only use: "binomialcomploglog",
"cumlogit", "multinomialcatsp", "multinomialprobit", "seqlogit", "seqprobit".

method character, which method should be used for estimation, options are "MCMC",
"HMCMC" (hierarchical MCMC), "REML" and "STEP".

verbose logical, should output be printed to the R console during runtime of bayesx.

dir.rm logical, should the the output files and directory removed after estimation?

outfile character, specify a directory where bayesx should store all output files, all
output files will be named with model.name as the base name.

replace if set to TRUE, the files in the output directory specified in argument outfile
will be replaced.

iterations integer, sets the number of iterations for the sampler.
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burnin integer, sets the burn-in period of the sampler.

maxint integer, if first or second order random walk priors are specified, in some cases
the data will be slightly grouped: The range between the minimal and maximal
observed covariate values will be divided into (small) intervals, and for each
interval one parameter will be estimated. The grouping has almost no effect on
estimation results as long as the number of intervals is large enough. With the
maxint option the amount of grouping can be determined by the user. integer
is the maximum number of intervals allowed. for equidistant data, the default
maxint = 150 for example, means that no grouping will be done as long as the
number of different observations is equal to or below 150. for non equidistant
data some grouping may be done even if the number of different observations is
below 150.

step integer, defines the thinning parameter for MCMC simulation. E.g., step = 50
means, that only every 50th sampled parameter will be stored and used to com-
pute characteristics of the posterior distribution as means, standard deviations
or quantiles. The aim of thinning is to reach a considerable reduction of disk
storing and autocorrelations between sampled parameters.

predict logical, option predict may be specified to compute samples of the deviance
D, the effective number of parameters pD and the deviance information crite-
rion DIC of the model. In addition, if predict = FALSE, only output files of
estimated effects will be returned, otherwise an expanded dataset using all ob-
servations would be written in the output directory, also containing the data used
for estimation. Hence, this option is useful when dealing with large data sets,
that might cause memory problems if predict is set to TRUE.

seed integer, set the seed of the random number generator in BayesX, usually set
using function set.seed.

hyp.prior numeric, defines the value of the hyper-parameters a and b for the inverse gamma
prior of the overall variance parameter σ2, if the response distribution is Gaus-
sian. numeric, must be a positive real valued number. The default is hyp.prior
= c(1, 0.005).

distopt character, defines the implemented formulation for the negative binomial model
if the response distribution is negative binomial. The two possibilities are to
work with a negative binomial likelihood (distopt = "nb") or to work with the
Poisson likelihood and the multiplicative random effects (distopt = "poga").

reference character, option reference is meaningful only if either family = "multinomial"
or family = "multinomialprobit" is specified as the response distribution. In
this case reference defines the reference category to be chosen. Suppose, for
instance, that the response is three categorical with categories 1, 2 and 3. Then
reference = 2 defines the value 2 to be the reference category.

zipdistopt character, defines the zero inflated distribution for the regression analysis. The
two possibilities are to work with a zero infated Poisson distribution (zipdistopt
= "zip") or to work with the zero inflated negative binomial likelihood (zipdistopt
= "zinb").

begin character, option begin is meaningful only if family = "cox" is specified as the
response distribution. In this case begin specifies the variable that records when
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the observation became at risk. This option can be used to handle left trunca-
tion and time-varying covariates. If begin is not specified, all observations are
assumed to have become at risk at time 0.

level integer, besides the posterior means and medians, BayesX provides point-wise
posterior credible intervals for every effect in the model. In a Bayesian approach
based on MCMC simulation techniques credible intervals are estimated by com-
puting the respective quantiles of the sampled effects. By default, BayesX com-
putes (point-wise) credible intervals for nominal levels of 80% and 95%. The
option level[1] allows to redefine one of the nominal levels (95%). Adding,
for instance, level[1] = 99 to the options list computes credible intervals for
a nominal level of 99% rather than 95%. Similar to argument level[1] the
option level[2] allows to redefine one of the nominal levels (80%). Adding,
for instance, level[2] = 70 to the options list computes credible intervals for a
nominal level of 70% rather than 80%.

eps numeric, defines the termination criterion of the estimation process. If both the
relative changes in the regression coefficients and the variance parameters are
less than eps, the estimation process is assumed to have converged.

lowerlim numeric, since small variances are close to the boundary of their parameter
space, the usual fisher-scoring algorithm for their determination has to be mod-
ified. If the fraction of the penalized part of an effect relative to the total effect
is less than lowerlim, the estimation of the corresponding variance is stopped
and the estimator is defined to be the current value of the variance (see section
6.2 of the BayesX methodology manual for details).

maxit integer, defines the maximum number of iterations to be used in estimation.
Since the estimation process will not necessarily converge, it may be useful to
define an upper bound for the number of iterations. Note, that BayesX returns
results based on the current values of all parameters even if no convergence
could be achieved within maxit iterations, but a warning message will be printed
in the output window.

maxchange numeric, defines the maximum value that is allowed for relative changes in pa-
rameters in one iteration to prevent the program from crashing because of nu-
merical problems. Note, that BayesX produces results based on the current
values of all parameters even if the estimation procedure is stopped due to nu-
merical problems, but an error message will be printed in the output window.

leftint character, gives the name of the variable that contains the lower (left) bound-
ary Tlo of the interval [Tlo, Tup] for an interval censored observation. for right
censored or uncensored observations we have to specify Tlo = Tup . If left-
int is missing, all observations are assumed to be right censored or uncensored,
depending on the corresponding value of the censoring indicator.

lefttrunc character, option lefttrunc specifies the name of the variable containing the
left truncation time Ttr. For observations that are not truncated, we have to
specify Ttr = 0. If lefttrunc is missing, all observations are assumed to
be not truncated. for multi-state models variable lefttrunc specifies the left
endpoint of the corresponding time interval.

state character, for multi-state models, state specifies the current state variable of
the process.
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algorithm character, specifies the selection algorithm. Possible values are "cdescent1"
(adaptive algorithms in the methodology manual, see subsection 6.3), "cdescent2"
(adaptive algorithms 1 and 2 with backfitting, see remarks 1 and 2 of section 3 in
Belitz and Lang (2008)), "cdescent3" (search according to cdescent1 followed
by cdescent2 using the selected model in the first step as the start model) and
"stepwise" (stepwise algorithm implemented in the gam routine of S-plus, see
Chambers and Hastie, 1992). This option will rarely be specified by the user.

criterion character, specifies the goodness of fit criterion. If criterion = "MSEP" is spec-
ified the data are randomly divided into a test- and validation data set. The test
data set is used to estimate the models and the validation data set is used to es-
timate the mean squared prediction error (MSEP) which serves as the goodness
of fit criterion to compare different models. The proportion of data used for the
test and validation sample can be specified using option proportion, see below.
The default is to use 75% of the data for the training sample.

proportion numeric, this option may be used in combination with option criterion =
"MSEP", see above. In this case the data are randomly divided into a training
and a validation sample. proportion defines the fraction (between 0 and 1) of the
original data used as training sample.

startmodel character, defines the start model for variable selection. Options are "linear",
"empty", "full" and "userdefined".

trace character, specifies how detailed the output in the output window will be. Op-
tions are "trace_on", "trace_half" and "trace_off".

steps integer, defines the maximum number of iterations. If the selection process has
not converged after steps iterations the algorithm terminates and a warning is
raised. Setting steps = 0 allows the user to estimate a certain model without
any model choice. This option will rarely be specified by the user.

CI character, compute confidence intervals for linear and nonlinear terms. Option
CI allows to compute confidence intervals. Options are CI = "none", confidence
intervals conditional on the selected model CI = "MCMCselect" and uncondi-
tional confidence intervals where model uncertainty is taken into account CI =
"MCMCbootstrap". Both alternatives are computer intensive. Conditional con-
fidence intervals take much less computing time than unconditional intervals.
The advantage of unconditional confidence intervals is that sampling distribu-
tions for the degrees of freedom or smoothing parameters are obtained.

bootstrapsamples

integer, defines the number of bootstrap samples used for "CI = MCMCbootstrap".

... not used

Value

A list with the arguments specified is returned.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.
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References

For methodological and reference details see the BayesX manuals available at: https://www.
uni-goettingen.de/de/bayesx/550513.html.

Belitz C, Lang S (2008). Simultaneous selection of variables and smoothing parameters in struc-
tured additive regression models. Computational Statistics & Data Analysis, 53, 61–81.

Chambers JM, Hastie TJ (eds.) (1992). Statistical Models in S. Chapman & Hall, London.

Umlauf N, Adler D, Kneib T, Lang S, Zeileis A (2015). Structured Additive Regression Models: An
R Interface to BayesX. Journal of Statistical Software, 63(21), 1–46. https://www.jstatsoft.
org/v63/i21/

See Also

bayesx.

Examples

bayesx.control()

## Not run:
set.seed(111)
n <- 500
## regressors
dat <- data.frame(x = runif(n, -3, 3))
## response
dat$y <- with(dat, 10 + sin(x) + rnorm(n, sd = 0.6))

## estimate models with
## bayesx MCMC and REML
b1 <- bayesx(y ~ sx(x), method = "MCMC", data = dat)
b2 <- bayesx(y ~ sx(x), method = "REML", data = dat)

## compare reported output
summary(b1)
summary(b2)

## End(Not run)

bayesx.term.options Show BayesX Term Options

Description

BayesX model terms specified using functions sx may have additional optional control arguments.
Therefore function bayesx.term.options displays the possible additional controlling parameters
for a particular model term.

https://www.uni-goettingen.de/de/bayesx/550513.html
https://www.uni-goettingen.de/de/bayesx/550513.html
https://www.jstatsoft.org/v63/i21/
https://www.jstatsoft.org/v63/i21/
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Usage

bayesx.term.options(bs = "ps", method = "MCMC")

Arguments

bs character, the term specification for which controlling parameters should be
shown.

method character, for which method should additional arguments be shown, options are
"MCMC", "REML" and "STEP".

Details

At the moment the following model terms are implemented, for which additional controlling pa-
rameters may be specified:

• "rw1", "rw2": Zero degree P-splines: Defines a zero degree P-spline with first or second order
difference penalty. A zero degree P-spline typically estimates for every distinct covariate value
in the dataset a separate parameter. Usually there is no reason to prefer zero degree P-splines
over higher order P-splines. An exception are ordinal covariates or continuous covariates with
only a small number of different values. For ordinal covariates higher order P-splines are
not meaningful while zero degree P-splines might be an alternative to modeling nonlinear
relationships via a dummy approach with completely unrestricted regression parameters.

• "season": Seasonal effect of a time scale.

• "ps", "psplinerw1", "psplinerw2": P-spline with first or second order difference penalty.

• "te", "pspline2dimrw1": Defines a two-dimensional P-spline based on the tensor product
of one-dimensional P-splines with a two-dimensional first order random walk penalty for the
parameters of the spline.

• "kr", "kriging": Kriging with stationary Gaussian random fields.

• "gk", "geokriging": Geokriging with stationary Gaussian random fields: Estimation is
based on the centroids of a map object provided in boundary format (see function read.bnd
and shp2bnd) as an additional argument named map within function sx, or supplied within
argument xt when using function s, e.g., xt = list(map = MapBnd).

• "gs", "geospline": Geosplines based on two-dimensional P-splines with a two-dimensional
first order random walk penalty for the parameters of the spline. Estimation is based on the
coordinates of the centroids of the regions of a map object provided in boundary format (see
function read.bnd and shp2bnd) as an additional argument named map (see above).

• "mrf", "spatial": Markov random fields: Defines a Markov random field prior for a spatial
covariate, where geographical information is provided by a map object in boundary or graph
file format (see function read.bnd, read.gra and shp2bnd), as an additional argument named
map (see above).

• "bl", "baseline": Nonlinear baseline effect in hazard regression or multi-state models: De-
fines a P-spline with second order random walk penalty for the parameters of the spline for
the log-baseline effect log(λ(time)).

• "factor": Special BayesX specifier for factors, especially meaningful if method = "STEP",
since the factor term is then treated as a full term, which is either included or removed from
the model.
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• "ridge", "lasso", "nigmix": Shrinkage of fixed effects: defines a shrinkage-prior for the
corresponding parameters γj , j = 1, . . . , q, q ≥ 1 of the linear effects x1, . . . , xq . There are
three priors possible: ridge-, lasso- and Normal Mixture of inverse Gamma prior.

• "re": Gaussian i.i.d. Random effects of a unit or cluster identification covariate.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

Examples

## show arguments for P-splines
bayesx.term.options(bs = "ps")
bayesx.term.options(bs = "ps", method = "REML")

## Markov random fields
bayesx.term.options(bs = "mrf")

bayesx_logfile BayesX Log-Files

Description

Function to show the internal BayesX log-files.

Usage

bayesx_logfile(x, model = 1L)

Arguments

x a fitted "bayesx" object.

model integer, for which model the log-file should be printed, i.e. if x contains more
that one estimated model.

Value

The log-file returned from BayesX.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

bayesx.
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Examples

## Not run:
## generate some data
set.seed(111)
n <- 500

## regressor
dat <- data.frame(x = runif(n, -3, 3))

## response
dat$y <- with(dat, 1.5 + sin(x) + rnorm(n, sd = 0.6))

## estimate model
b <- bayesx(y ~ sx(x), data = dat)

## now see the log-file
bayesx_logfile(b)

## End(Not run)

bayesx_prgfile BayesX Program-Files

Description

Function to show the internal BayesX program-files.

Usage

bayesx_prgfile(x, model = 1L)

Arguments

x a fitted "bayesx" object.

model integer, for which model the program-file should be printed, i.e. if x contains
more that one estimated model.

Value

The program file used for estimation with BayesX.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

bayesx.
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Examples

## Not run:
## generate some data
set.seed(111)
n <- 500

## regressor
dat <- data.frame(x = runif(n, -3, 3))

## response
dat$y <- with(dat, 1.5 + sin(x) + rnorm(n, sd = 0.6))

## estimate model
b <- bayesx(y ~ sx(x), data = dat)

## now see the prg-file
bayesx_prgfile(b)

## End(Not run)

bayesx_runtime BayesX Program-Runtimes

Description

Function to extract running times of the BayesX binary.

Usage

bayesx_runtime(x, model = 1L)

Arguments

x a fitted "bayesx" object.

model integer, for which model the program-file should be printed, i.e. if x contains
more that one estimated model.

Value

The runtime of the BayesX binary returned form system.time.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

bayesx.
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Examples

## Not run:
## generate some data
set.seed(111)
n <- 500

## regressor
dat <- data.frame(x = runif(n, -3, 3))

## response
dat$y <- with(dat, 1.5 + sin(x) + rnorm(n, sd = 0.6))

## estimate model
b <- bayesx(y ~ sx(x), data = dat)

## now see the prg-file
bayesx_runtime(b)

## End(Not run)

BeechBnd Beech Location Map

Description

This database produces a location map of beeches around Rothenbuch, Germany.

Usage

data("BeechBnd")

Format

A list of class "bnd" containing 83 polygon matrices with x-coordinates in the first and y-
coordinates in the second column each.

Source

https://www.uni-goettingen.de/de/bayesx/550513.html.

See Also

plotmap, read.bnd, write.bnd

Examples

## load BeechBnd and plot it
data("BeechBnd")
plotmap(BeechBnd)

https://www.uni-goettingen.de/de/bayesx/550513.html
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BeechGra Beech Neighborhood Information

Description

This database produces a graph file including neighborhood information of the beech trees around
Rothenbuch, Germany.

Usage

data("BeechGra")

Format

An adjacency matrix that represents the neighborhood structure defined in the graph file.

Source

https://www.uni-goettingen.de/de/bayesx/550513.html.

See Also

read.gra, bnd2gra

Examples

## load BeechGra adjacency matrix
data("BeechGra")
print(BeechGra)

bnd2gra Convert Boundary Format to Graph Format

Description

Converts a map in boundary format to a map in graph format.

Usage

bnd2gra(map, npoints = 2)

Arguments

map map in boundary format that should be converted.

npoints integer. How many points must be shared by two polygons to be a neighbor?

https://www.uni-goettingen.de/de/bayesx/550513.html
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Value

Returns an adjacency matrix that represents the neighborhood structure of the map object in graph
format.

Author(s)

Felix Heinzl, Thomas Kneib.

References

BayesX Reference Manual. Available at https://www.uni-goettingen.de/de/bayesx/550513.
html.

See Also

read.bnd, read.gra, write.bnd, write.gra.

Examples

data("FantasyBnd")
plotmap(FantasyBnd, names = TRUE)
adjmat <- bnd2gra(FantasyBnd)
adjmat

colorlegend Plot a Color Legend

Description

Function to generate a color legend, the legend may be added to an existing plot or drawn in a
separate plotting window.

Usage

colorlegend (color = NULL, ncol = NULL, x = NULL,
breaks = NULL, pos = "center", shift = 0.02, side.legend = 1L,
side.ticks = 1L, range = NULL, lrange = NULL,
width = 0.4, height = 0.06, scale = TRUE, xlim = NULL,
ylim = NULL, plot = NULL, full = FALSE, add = FALSE,
col.border = "black", lty.border = 1L, lwd.border = 1L,
ticks = TRUE, at = NULL, col.ticks = "black", lwd.ticks = 1L,
lty.ticks = 1L, length.ticks = 0.3, labels = NULL,
distance.labels = 0.8, col.labels = "black", cex.labels = 1L,
digits = 2L, swap = FALSE, symmetric = TRUE, xpd = NULL,
title = NULL, side.title = 2, shift.title = c(0, 0), ...)

https://www.uni-goettingen.de/de/bayesx/550513.html
https://www.uni-goettingen.de/de/bayesx/550513.html
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Arguments

color character, integer. The colors for the legend, may also be a function, e.g. colors
= heat.colors.

ncol integer, the number of different colors that should be generated if color is a
function.

x numeric, values for which the color legend should be drawn.

breaks numeric, a set of breakpoints for the colors: must give one more breakpoint than
ncol.

pos character, numeric. The position of the legend. Either a numeric vector, e.g. pos
= c(0.1, 0.2) will add the legend at the 10% point in the x-direction and at the
20% point in the y-direction of the plotting window, may also be negative, or one
of the following: "bottomleft", "topleft", "topright", "bottomright",
"left", "right", "top", "bottom" and "center".

shift numeric, if argument pos is a character, shift determines the distance of the
legend from the plotting box.

side.legend integer, if set to 2 the legend will be flipped by 90 degrees.

side.ticks integer, if set to 2, the ticks and labels will be on the opposite site of the legend.

range numeric, specifies a range for x values for which the legend should be drawn.

lrange numeric, specifies the range of legend.

width numeric, the width of the legend, if scale = TRUE the width is proportional to
the x-limits of the plotting window.

height numeric, the height of the legend, if scale = TRUE the height is proportional to
the y-limits of the plotting window.

scale logical, if set to TRUE, the width and height of the legend will be calculated
proportional to the x- and y-limits of the plotting window.

xlim numeric, the x-limits of the plotting window the legend should be added for,
numeric vector, e.g., returned from function range.

ylim numeric, the y-limits of the plotting window the legend should be added for,
numeric vector, e.g., returned from function range.

plot logical, if set to TRUE, the legend will be drawn in a separate plotting window.

full logical, if set to TRUE, the legend will be drawn using the full window range.

add logical, if set to TRUE, the legend will be added to an existing plot.

col.border the color of the surrounding border line of the legend.

lty.border the line type of the surrounding border line of the legend.

lwd.border the line width of the surrounding border line of the legend.

ticks logical, if set to TRUE, ticks will be added to the legend.

at numeric, specifies at which locations ticks and labels should be added.

col.ticks the colors of the ticks.

lwd.ticks the line width of the ticks.

lty.ticks the line type of the ticks.
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length.ticks numeric, the length of the ticks as percentage of the height or width of the
colorlegend.

labels character, specifies labels that should be added to the ticks.
distance.labels

numeric, the distance of the labels to the ticks, proportional to the length of the
ticks.

col.labels the colors of the labels.

cex.labels text size of the labels.

digits integer, the decimal places if labels are numerical.

swap logical, if set to TRUE colors will be represented in reverse order.

symmetric logical, if set to TRUE, a symmetric legend will be drawn corresponding to the
+- max(abs(x)) value.

xpd sets the xpd parameter in function par.

title character, a title for the legend.

side.title integer, 1 or 2. Specifies where the legend is placed, either on top if side.title
= 1 or at the bottom if side.title = 2.

shift.title numeric vector of length 2. Specifies a possible shift of the title in either x- or
y-direction.

... other graphical parameters to be passed to function text.

Value

A named list with the colors generated, the breaks and the function map, which may be used for
mapping of x values to the colors specified in argument colors, please see the examples below.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

Examples

## play with colorlegend
colorlegend()
colorlegend(side.legend = 2)
colorlegend(side.legend = 2, side.ticks = 2)
colorlegend(height = 2)
colorlegend(width = 1, height = 0.8, scale = FALSE,

pos = c(0, 0.2), length.ticks = 0.5)
colorlegend(color = heat.colors, ncol = 9)
colorlegend(color = heat.colors, ncol = 9, swap = TRUE)
colorlegend(pos = "bottomleft")
colorlegend(pos = "topleft")
colorlegend(pos = "topright")
colorlegend(pos = "bottomright")

## take x values for the color legend
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x <- runif(100, -2, 2)
colorlegend(color = diverge_hcl, x = x)
colorlegend(color = diverge_hcl, x = x, at = c(-1.5, 0, 1.5))
colorlegend(color = diverge_hcl, x = x, at = c(-1.5, 0, 1.5),

labels = c("low", "middle", "high"))
colorlegend(color = rainbow_hcl, x = x, at = c(-1.5, 0, 1.5),

labels = c("low", "middle", "high"), length.ticks = 1.5)
colorlegend(color = heat_hcl, x = x, at = c(-1.5, 0, 1.5),

labels = c("low", "middle", "high"), length.ticks = 1.5,
lwd.border = 2, lwd.ticks = 2, cex.labels = 1.5, font = 2)

colorlegend(color = topo.colors, x = x, at = c(-1.5, 0, 1.5),
labels = c("low", "middle", "high"), length.ticks = 1.5,
lwd.border = 2, lwd.ticks = 2, cex.labels = 1.5, font = 2,
col.border = "green3", col.ticks = c(2, 5, 2),
col.labels = c(6, 4, 3))

colorlegend(color = diverge_hsv, x = x, at = c(-1.5, 0, 1.5),
labels = c("low", "middle", "high"), length.ticks = 1.5,
lwd.border = 2, lwd.ticks = 2, cex.labels = 1.5, font = 2,
col.border = "green3", col.ticks = c(2, 5, 2),
col.labels = c(6, 4, 3), lty.border = 2, lty.ticks = c(2, 3, 2))

colorlegend(color = diverge_hsv, x = x, at = c(-1.5, 0, 1.5),
labels = c("low", "middle", "high"), length.ticks = 1.5,
lwd.border = 2, lwd.ticks = 2, cex.labels = 1.5, font = 2,
col.border = "green3", col.ticks = c(2, 5, 2),
col.labels = c(6, 4, 3), lty.border = 2, lty.ticks = c(2, 3, 2),
ncol = 3)

colorlegend(color = c("red", "white", "red"), x = x, at = c(-1.5, 0, 1.5),
labels = c("low", "middle", "high"), length.ticks = 1.5,
lwd.border = 2, lwd.ticks = 2, cex.labels = 1.5, font = 2,
col.border = "green3", col.ticks = c(2, 5, 2),
col.labels = c(6, 4, 3), lty.border = 2, lty.ticks = c(2, 3, 2),
ncol = 3, breaks = c(-2, -1, 1, 2))

colorlegend(color = diverge_hcl, x = x, range = c(-3, 3))
colorlegend(color = diverge_hcl, x = x, range = c(-3, 3), lrange = c(-6, 6))

## combine plot with color legend
n <- 100
x <- y <- seq(-3, 3, length.out = n)
z <- outer(sin(x), cos(x))
pal <- colorlegend(color = diverge_hcl, x = z, plot = FALSE)
op <- par(no.readonly = TRUE)
par(mar = c(4.1, 4.1, 1.1, 1.1))
layout(matrix(c(1, 2), nrow = 1), widths = c(1, 0.3))
image(x = x, y = y, z = z, col = pal$colors, breaks = pal$breaks)
par(mar = c(4.1, 0.1, 1.1, 3.1))
colorlegend(color = diverge_hcl, x = z, plot = TRUE, full = TRUE,

side.legend = 2, side.ticks = 2)
par(op)

## another example with different plot
n <- 50
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x <- sin(seq(-3, 3, length.out = n))
pal <- colorlegend(color = diverge_hcl, x = x, plot = FALSE)
op <- par(no.readonly = TRUE)
par(mar = c(7.1, 4.1, 1.1, 1.1))
barplot(x, border = "transparent", col = pal$map(x))
colorlegend(color = diverge_hcl, x = x, plot = FALSE, add = TRUE,

xlim = c(0, 60), ylim = c(-1, 1), pos = c(0, -0.15), xpd = TRUE,
scale = FALSE, width = 60, height = 0.15,
at = seq(min(x), max(x), length.out = 9))

par(op)

cprob Extract Contour Probabilities

Description

Function to extract estimated contour probabilities of a particular effect estimated with P-splines us-
ing Markov chain Monte Carlo (MCMC) estimation techniques. Note that, the contour probability
option must be specified within function sx, see the example.

Usage

cprob(object, model = NULL, term = NULL, ...)

Arguments

object an object of class "bayesx".

model for which model the contour probabilities should be provided, either an integer
or a character, e.g. model = "mcmc.model".

term if not NULL, the function will search for the term contour probabilities should be
extracted for, either an integer or a character, eg term = "s(x)".

... not used.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

References

Brezger, A., Lang, S. (2008): Simultaneous probability statements for Bayesian P-splines. Statisti-
cal Modeling, 8, 141–186.

See Also

bayesx.
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Examples

## Not run:
## generate some data
set.seed(111)
n <- 500

## regressor
dat <- data.frame(x = runif(n, -3, 3))

## response
dat$y <- with(dat, 1.5 + sin(x) + rnorm(n, sd = 0.6))

## estimate model
## need to set the contourprob option,
## otherwise BayesX will not calculate probabilities
## see also the reference manual of BayesX available
## at www.BayesX.org
b <- bayesx(y ~ sx(x, bs = "ps", contourprob = 4), data = dat)

## extract contour probabilities
cprob(b, term = "sx(x)")

## End(Not run)

delete.neighbor Delete Neighborhood Relations

Description

Adds the neighborhhod relationship between two given regions from a map object in graph format.

Usage

delete.neighbor(map, region1, region2)

Arguments

map map object in graph format that should be modified.
region1, region2

names of the regions that should no longer be regarded as neighbors.

Value

Returns an adjacency matrix that represents the neighborhood structure of map minus the deleted
neighborhood relation in graph format.

Author(s)

Felix Heinzl, Thomas Kneib.
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See Also

get.neighbor, add.neighbor, read.gra, write.gra, bnd2gra.

Examples

## read the graph file
file <- file.path(find.package("R2BayesX"), "examples", "Germany.gra")
germany <- read.gra(file)

## delete some neighbors
get.neighbor(germany, c("7339"))
germany <- delete.neighbor(germany, "7339", "7141")
get.neighbor(germany, c("7339"))

DIC Deviance Information Criterion

Description

Generic function returning the deviance information criteriom of a fitted model object.

Usage

DIC(object, ...)

## S3 method for class 'bayesx'
DIC(object, ...)

Arguments

object an object of class "bayesx".

... specify for which model the criterion should be returned, e.g. type model = 1
to obtain the value for the first model. Only meaningful if object contains of
more than one model.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

bayesx.
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Examples

## Not run:
## generate some data
set.seed(121)
n <- 200

## regressors
dat <- data.frame(x = runif(n, -3, 3))

## generate response
dat$y <- with(dat, 1.5 + sin(x) + rnorm(n, sd = 0.6))

## estimate model
b <- bayesx(y ~ sx(x), data = dat, method = "MCMC")

## extract DIC
DIC(b)

## End(Not run)

FantasyBnd Fantasy Map

Description

This database produces a fantasy map of 10 regions.

Usage

data("FantasyBnd")

Format

A list of class "bnd" containing 10 polygon matrices with x-coordinates in the first and y-
coordinates in the second column each.

See Also

plotmap, read.bnd, write.bnd

Examples

## load FantasyBnd and plot it
data("FantasyBnd")
plotmap(FantasyBnd)
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fitted.bayesx Extract BayesX Fitted Values and Residuals

Description

Extractor functions to the fitted values/model residuals of the estimated model with bayesx and
fitted model term partial effects/residuals.

Usage

## S3 method for class 'bayesx'
fitted(object, model = NULL, term = NULL, ...)

## S3 method for class 'bayesx'
residuals(object, model = NULL, term = NULL, ...)

Arguments

object an object of class "bayesx".

model for which model the fitted values/residuals should be provided, either an integer
or a character, e.g. model = "mcmc.model".

term if not NULL, the function will search for the term fitted values/residuals specified
here, either an integer or a character, eg term = "sx(x)".

... not used.

Value

For fitted.bayesx, either the fitted linear predictor and mean or if e.g. term = "sx(x)", an object
with class "xx.bayesx", where "xx" is depending of the type of the term. In principle the returned
term object is simply a data.frame containing the covariate(s) and its effects, depending on the
estimation method, e.g. for MCMC estimated models, mean/median fitted values and other quan-
tities are returned. Several additional informations on the term are provided in the attributes of
the object. For all types of terms plotting functions are provided, see function plot.bayesx.

Using residuals.bayesx will either return the mean model residuals or the mean partial residuals
of a term specified in argument term.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

read.bayesx.output.
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Examples

## Not run:
## generate some data
set.seed(121)
n <- 500

## regressors
dat <- data.frame(x = runif(n, -3, 3), z = runif(n, 0, 1),

w = runif(n, 0, 3))

## generate response
dat$y <- with(dat, 1.5 + sin(x) + z -3 * w + rnorm(n, sd = 0.6))

## estimate model
b1 <- bayesx(y ~ sx(x) + z + w, data = dat)

## extract fitted values
fit <- fitted(b1)
hist(fit, freq = FALSE)

## now extract 1st model term
## and plot it
fx <- fitted(b1, term = "sx(x)")
plot(fx)

## extract model residuals
hist(residuals(b1))

## extract partial residuals for sx(x)
pres <- residuals(b1, term = "sx(x)")
plot(fx, ylim = range(pres[, 2]))
points(pres)

## End(Not run)

## now another example with
## use of read.bayesx.output
## load example data from
## package R2BayesX
dir <- file.path(find.package("R2BayesX"), "examples", "ex01")
b2 <- read.bayesx.output(dir)

## extract fitted values
hist(fitted(b2))

## extract model term of x
## and plot it
fx <- fitted(b2, term = "sx(x)")
plot(fx)

## have a look at the attributes
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names(attributes(fx))

## extract the sampling path of the variance
spv <- attr(fx, "variance.sample")
plot(spv, type = "l")

## Not run:
## combine model objects
b <- c(b1, b2)

## extract fitted terms for second model
fit <- fitted(b, model = 2, term = 1:2)
names(fit)
plot(fit["sx(id)"])

## End(Not run)

ForestHealth Forest Health Data

Description

The data set consists of 16 variables with 1796 observations on forest health to identify potential
factors influencing the health status of trees and therefore the vital status of the forest. In addition
to covariates characterizing a tree and its stand, the exact locations of the trees are known. The
interest is on detecting temporal and spatial trends while accounting for further covariate effects in
a flexible manner.

Usage

data("ForestHealth")

Format

A data frame containing 1793 observations on 16 variables.

id: tree location identification number.

year: year of census.

defoliation: percentage of tree defoliation in three ordinal categories, ‘defoliation < 12.5%’, ‘12.5%
<= defoliation < 50%’ and ‘defoliation >= 50%’

x: x-coordinate of the tree location.

y: y-coordinate of the tree location.

age: age of stands in years.

canopy: forest canopy density in percent.

inclination: slope inclination in percent.
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elevation: elevation (meters above sea level).

soil: soil layer depth in cm.

ph: soil pH at 0-2cm depth.

moisture: soil moisture level with categories ‘moderately dry’, ‘moderately moist’ and ‘moist or
temporarily wet’.

alkali: proportion of base alkali-ions with categories ‘very low’, ‘low’, ‘high’ and ‘very high’.

humus: humus layer thickness in cm, categorical coded.

stand: stand type with categories ‘deciduous’ and ‘mixed’.

fertilized: fertilization applied with categories ‘yes’ and ‘no’.

Source

https://www.uni-goettingen.de/de/bayesx/550513.html.

References

Kneib, T. & Fahrmeir, L. (2010): A Space-Time Study on Forest Health. In: Chandler, R. E.
& Scott, M. (eds.): Statistical Methods for Trend Detection and Analysis in the Environmental
Sciences, Wiley.

G\"ottlein A, Pruscha H (1996). Der Einfuss von Bestandskenngr\"ossen, Topographie, Standord
und Witterung auf die Entwicklung des Kronenzustandes im Bereich des Forstamtes Rothenbuch.
Forstwissens. Zent., 114, 146–162.

See Also

bayesx

Examples

## Not run:
## load zambia data and map
data("ForestHealth")
data("BeechBnd")

fm <- bayesx(defoliation ~ stand + fertilized +
humus + moisture + alkali + ph + soil +
sx(age) + sx(inclination) + sx(canopy) +
sx(year) + sx(elevation),
family = "cumlogit", method = "REML", data = ForestHealth)

summary(fm)
plot(fm, term = c("sx(age)", "sx(inclination)",

"sx(canopy)", "sx(year)", "sx(elevation)"))

## End(Not run)

https://www.uni-goettingen.de/de/bayesx/550513.html
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GAMart GAM Artificial Data Set

Description

This is an artificial data set mainly used to test the R2BayesX interfacing functions. The data
includes three different types of response variables. One numeric, one binomial and a categorical
response with 4 different levels. In addition, several numeric and factor covariates are provided.
The data set is constructed such that the observations are based upon different locations (pixels in
‘longitude’ and ‘latitude’ coordinates) obtained from a regular grid.

Usage

data("GAMart")

Format

A data frame containing 500 observations on 12 variables.

num: numeric, response variable.

bin: factor, binomial response variable with levels "no" and "yes".

cat: factor, multi categorical response with levels "none", "low", "medium" and "high".

x1: numeric covariate.

x2: numeric covariate.

x3: numeric covariate.

fac: factor covariate with levels "low", "medium" and "high".

id: factor, pixel identification index.

long: numeric, the longitude coordinate of the pixel.

lat: numeric, the latitude coordinate of the pixel.

See Also

bayesx

Examples

## Not run:
data("GAMart")

## normal response
b <- bayesx(num ~ fac + sx(x1) + sx(x2) + sx(x3) +

sx(long, lat, bs = "te") + sx(id, bs = "re"),
data = GAMart)

summary(b)
plot(b)
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## binomial response
b <- bayesx(bin ~ fac + sx(x1) + sx(x2) + sx(x3) +

sx(long, lat, bs = "te") + sx(id, bs = "re"),
data = GAMart, family = "binomial", method = "REML")

summary(b)
plot(b)

## categorical response
b <- bayesx(cat ~ fac + sx(x1) + sx(x2) + sx(x3) +

sx(long, lat, bs = "te") + sx(id, bs = "re"),
data = GAMart, family = "cumprobit", method = "REML")

summary(b)
plot(b)

## End(Not run)

GCV Gerneralized Cross Validation Criterion

Description

Generic function returning the generalized cross validation criterium of a fitted model object.

Usage

GCV(object, ...)

## S3 method for class 'bayesx'
GCV(object, ...)

Arguments

object an object of class "bayesx".

... specify for which model the criterion should be returned, e.g. type model = 1
to obtain the value for the first model. Only meaningful if object contains of
more than one model.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

bayesx.
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Examples

## Not run:
## generate some data
set.seed(121)
n <- 200

## regressors
dat <- data.frame(x = runif(n, -3, 3))

## generate response
dat$y <- with(dat, 1.5 + sin(x) + rnorm(n, sd = 0.6))

## estimate model
b <- bayesx(y ~ sx(x), data = dat, method = "REML")

## extract GCV
GCV(b)

## End(Not run)

GermanyBnd Germany Map

Description

This database produces a map of Germany since 2001 containing 439 administrative districts.

Usage

data("GermanyBnd")

Format

A list of class "bnd" containing 466 polygon matrices with x-coordinates in the first and y-
coordinates in the second column each.

Source

https://www.uni-goettingen.de/de/bayesx/550513.html.

See Also

plotmap, read.bnd, write.bnd

Examples

## load GermanyBnd and plot it
data("GermanyBnd")
plotmap(GermanyBnd)

https://www.uni-goettingen.de/de/bayesx/550513.html
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get.neighbor Obtain Neighbors of Given Regions

Description

Extracts the neighbors of a number of regions from a map in graph format.

Usage

get.neighbor(map, regions)

Arguments

map map object in graph format.

regions vector of names of regions for which the neighbors should be axtracted.

Value

A list of vectors containing the neighbors of the elements in regions.

Author(s)

Felix Heinzl, Thomas Kneib.

See Also

add.neighbor, delete.neighbor

Examples

file <- file.path(find.package("R2BayesX"), "examples", "Germany.gra")
germany <- read.gra(file)
get.neighbor(germany, "1001")
get.neighbor(germany, c("1001", "7339"))

getscript Generate an executable R fitted model script

Description

The function generates an executable R script for obtaining summary statistics, visualization of
model diagnostics and term effect plots of a fitted bayesx model object.

Usage

getscript(object, file = NULL, device = NULL, ...)
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Arguments

object an object of class "bayesx".

file optional, an output file the script is written to.

device a graphical device function, e.g. pdf, see the examples and the help site of
Devices for all available devices. If set, the script will have extra calls to the
specified devices that will generate graphics to the specified file. If file =
NULL, the working directory is taken.

... arguments passed to devices, e.g. height and width of a graphical device.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

bayesx.

Examples

## Not run:
## generate some data
set.seed(111)
n <- 500

## regressor
dat <- data.frame(x = runif(n, -3, 3))

## response
dat$y <- with(dat, 1.5 + sin(x) + rnorm(n, sd = 0.6))

## estimate model
b <- bayesx(y ~ sx(x), data = dat)

## generate the R script
## and print it
script <- getscript(b)
script

## with a pdf device
script <- getscript(b, device = pdf, height = 5, width = 6)
script

## End(Not run)
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GRstats Compute Gelman and Rubin’s convergence diagnostics from multicore
BayesX models.

Description

This function takes a fitted bayesx object estimated with multiple chains/cores and computes the
Gelman and Rubin’s convergence diagnostic of the model parameters using function gelman.diag
provided in package coda.

Usage

GRstats(object, term = NULL, ...)

Arguments

object an object of class "bayesx", returned from the model fitting function bayesx
using the multiple chain or core option.

term character or integer. The term for which the diagnostics should be computed,
see also function samples.

... arguments passed to function gelman.diag.

Value

An object returned from gelman.diag.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

bayesx, gelman.diag, samples.

Examples

## Not run:
## generate some data
set.seed(111)
n <- 500

## regressors
dat <- data.frame(x = runif(n, -3, 3), z = runif(n, -3, 3),

w = runif(n, 0, 6), fac = factor(rep(1:10, n/10)))

## response
dat$y <- with(dat, 1.5 + sin(x) + cos(z) * sin(w) +

c(2.67, 5, 6, 3, 4, 2, 6, 7, 9, 7.5)[fac] + rnorm(n, sd = 0.6))
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## estimate model
b <- bayesx(y ~ sx(x) + sx(z, w, bs = "te") + fac,

data = dat, method = "MCMC", chains = 3)

## obtain Gelman and Rubin's convergence diagnostics
GRstats(b, term = c("sx(x)", "sx(z,w)"))
GRstats(b, term = c("linear-samples", "var-samples"))

## of all parameters
GRstats(b, term = c("sx(x)", "sx(z,w)",

"linear-samples", "var-samples"))

## End(Not run)

Interface between nb and gra format

Convert nb and gra format into each other

Description

Convert neighborhood structure objects of class "nb" from R-package spdep to graph objects of
class "gra" from R-package R2BayesX and vice versa.

Usage

nb2gra(nbObject)
gra2nb(graObject)

Arguments

nbObject neighborhood structure object of class "nb"

graObject graph object of class "gra"

Value

Equivalent object in the other format.

Author(s)

Daniel Sabanes Bove.

See Also

sp2bnd, bnd2sp for conversion between the geographical information formats and read.gra, write.gra
for the interface to the R2BayesX files.
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Examples

## Not run: ## first nb to gra:
if(requireNamespace("spdep") &

requireNamespace("rgdal") &
requireNamespace("spData")) {
library("spdep")
library("spData")
library("rgdal")

columbus <- readOGR(system.file("shapes/columbus.shp", package="spData")[1])

colNb <- poly2nb(columbus)

## ... here manual editing is possible ...
## then export to graph format
colGra <- nb2gra(colNb)

## and save in BayesX file
graFile <- tempfile()
write.gra(colGra, file=graFile)

## now back from gra to nb:
colGra <- read.gra(graFile)
newColNb <- gra2nb(colGra)
newColNb

## compare this with the original
colNb

## only the call attribute does not match (which is OK):
all.equal(newColNb, colNb, check.attributes = FALSE)
attr(newColNb, "call")
attr(colNb, "call")

}
## End(Not run)

Interface between sp and bnd format

Convert sp and bnd format into each other

Description

Convert geographical information objects of class "SpatialPolygons" (or specializations) from
R-package sp to objects of class "bnd" from R-package R2BayesX and vice versa.

Usage

sp2bnd(spObject, regionNames, height2width, epsilon)
bnd2sp(bndObject)
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Arguments

spObject object of class "SpatialPolygons" (or specializations).

regionNames character vector of region names (parallel to the Polygons list in spObject), de-
faults to the IDs.

height2width ratio of total height to width, defaults to the bounding box values.

epsilon how much can two polygons differ (in maximum squared Euclidean distance)
and still match each other?, defaults to machine precision.

bndObject object of class "bnd".

Value

Equivalent object in the other format.

Author(s)

Daniel Sabanes Bove.

See Also

nb2gra, gra2nb for conversion between the neighborhood structure formats and read.bnd, write.bnd
for the interface to the R2BayesX files.

Examples

## Not run: ## bnd to sp:
file <- file.path(find.package("R2BayesX"), "examples", "Germany.bnd")
germany <- read.bnd(file)
spGermany <- bnd2sp(germany)

## plot the result together with the neighborhood graph
if(requireNamespace("spdep")) {

library("spdep")
plot(spGermany)
nbGermany <- poly2nb(spGermany)
plot(nbGermany, coords = coordinates(spGermany), add = TRUE)

## example with one region inside another
spExample <- spGermany[c("7231", "7235"), ]
plot(spExample)
plot(poly2nb(spExample), coords = coordinates(spExample), add = TRUE)

## now back from sp to bnd:
bndGermany <- sp2bnd(spGermany)
plotmap(bndGermany)

## compare names and number of polygons
stopifnot(
identical(names(bndGermany), names(germany)),
identical(length(bndGermany), length(germany))

)
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}
## End(Not run)

MunichBnd Munich Map

Description

This database produces a city map of Munich containing 105 administrative districts.

Usage

data("MunichBnd")

Format

A list of class "bnd" containing 106 polygon matrices with x-coordinates in the first and y-
coordinates in the second column each.

Source

https://www.uni-goettingen.de/de/bayesx/550513.html.

See Also

plotmap, read.bnd, write.bnd

Examples

## load MunichBnd and plot it
data("MunichBnd")
plotmap(MunichBnd)

parse.bayesx.input Parse BayesX Input

Description

Funtion to parse bayesx input parameters which are then send to write.bayesx.input.

Usage

parse.bayesx.input(formula, data, weights = NULL,
subset = NULL, offset = NULL, na.action = na.fail,
contrasts = NULL, control = bayesx.control(...), ...)

https://www.uni-goettingen.de/de/bayesx/550513.html
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Arguments

formula symbolic description of the model (of type y ~ x). For more details see bayesx
and sx.

data a data.frame or list containing the model response variable and covariates re-
quired by the formula. By default the variables are taken from environment(formula):
typically the environment from which bayesx is called. Argument data may
also be a character string defining the directory the data is stored, where the first
row in the data set must contain the variable names and columns should be tab
separated.

weights prior weights on the data.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

offset can be used to supply a model offset for use in fitting.

na.action a function which indicates what should happen when the data contain NA’s.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

control specify several global control parameters for bayesx, see bayesx.control.

... arguments passed to bayesx.control.

Value

Returns a list of class "bayesx.input" which is send to write.bayesx.input for processing
within bayesx.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

Examples

parse.bayesx.input(y ~ x1 + sx(x2), data = "")

plot.bayesx Default BayesX Plotting

Description

Generic functions for plotting objects of class "bayesx" and model term classes "geo.bayesx",
"linear.bayesx", "mrf.bayesx", "random.bayesx" and "sm.bayesx".

Usage

## S3 method for class 'bayesx'
plot(x, model = NULL, term = NULL, which = 1L, ask = FALSE, ...)



50 plot.bayesx

Arguments

x a fitted bayesx object.

model for which model the plot should be provided, either an integer or a character,
e.g. model = "mcmc.model".

term the term that should be plotted, either an integer or a character, e.g. term =
"sx(x)".

which choose the type of plot that should be drawn, possible options are: "effect",
"coef-samples", "var-samples", "intcpt-samples", "hist-resid", "qq-resid",
"scatter-resid", "scale-resid", "max-acf". Argument which may also be
specified as integer, e.g. which = 1. The first three arguments are all model term
specific. For the residual model diagnostic plot options which may be set with
which = 5:8.

ask . . .

... other graphical parameters passed to plotblock, plotmap, plot2d, plot3d,
acf and density.

Details

Depending on the class of the term that should be plotted, function plot.bayesx calls one of the
following plotting functions in the end:

• plotblock,

• plotsamples,

• plotmap,

• plot2d,

• plot3d,

• acf,

• density,

For details on argument specifications, please see the help sites for the corresponding function.

If argument x contains of more than one model and e.g. term = 2, the second terms of all models
will be plotted

Note

If a model is specified with a structured and an unstructured spatial effect, e.g. the model formula
is something like y ~ sx(id, bs = "mrf", map = MapBnd) + sx(id, bs = "re"), the model output
contains of one additional total spatial effect, named with "sx(id):total". Also see the last
example.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

plotblock, plotsamples, plotmap, plot2d, plot3d, bayesx, read.bayesx.output.
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Examples

## Not run:
## generate some data
set.seed(111)
n <- 500

## regressors
dat <- data.frame(x = runif(n, -3, 3), z = runif(n, -3, 3),

w = runif(n, 0, 6), fac = factor(rep(1:10, n/10)))

## response
dat$y <- with(dat, 1.5 + sin(x) + cos(z) * sin(w) +

c(2.67, 5, 6, 3, 4, 2, 6, 7, 9, 7.5)[fac] + rnorm(n, sd = 0.6))

## estimate model
b1 <- bayesx(y ~ sx(x) + sx(z, w, bs = "te") + fac,

data = dat, method = "MCMC")

## plot p-spline term
plot(b1, term = 1)
## same with
plot(b1, term = "sx(x)")

## with residuals
plot(b1, term = "sx(x)", residuals = TRUE)

## plot tensor term
plot(b1, term = "sx(z,w)")

## use other palette
plot(b1, term = "sx(z,w)", col.surface = heat.colors)

## swap colors
plot(b1, term = "sx(z,w)", col.surface = heat.colors, swap = TRUE)

## plot tensor term with residuals
plot(b1, term = "sx(z,w)", residuals = TRUE)

## plot image and contour
plot(b1, term = "sx(z,w)", image = TRUE)
plot(b1, term = "sx(z,w)", image = TRUE, contour = TRUE)

## increase the grid
plot(b1, term = "sx(z,w)", image = TRUE, contour = TRUE, grid = 100)

## plot factor term
plot(b1, term = "fac")

## plot factor term with residuals
plot(b1, term = "fac", resid = TRUE, cex = 0.5)

## plot residual dignostics
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plot(b1, which = 5:8)

## plot variance sampling path of term sx(x)
plot(b1, term = 1, which = "var-samples")

## plot coefficients sampling paths of term sx(x)
plot(b1, term = 1, which = "coef-samples")

## plot the sampling path of the intercept
par(mfrow = c(1, 1))
plot(b1, which = "intcpt-samples")

## plot the autcorrelation function
## of the sampled intercept
plot(b1, which = "intcpt-samples",

acf = TRUE, lag.max = 50)

## increase lags
plot(b1, which = "intcpt-samples",

acf = TRUE, lag.max = 200)

## plot maximum autocorrelation
## of all sampled parameters in b1
plot(b1, which = "max-acf")

## plot maximum autocorrelation of
## all sampled coefficients of term sx(x)
plot(b1, term = "sx(x)", which = "coef-samples",

max.acf = TRUE, lag.max = 100)

## now a spatial example
set.seed(333)

## simulate some geographical data
data("MunichBnd")
N <- length(MunichBnd); names(MunichBnd) <- 1:N
n <- N*5

## regressors
dat <- data.frame(id = rep(1:N, n/N), x1 = runif(n, -3, 3))
dat$sp <- with(dat, sort(runif(N, -2, 2), decreasing = TRUE)[id])
dat$re <- with(dat, rnorm(N, sd = 0.6)[id])

## response
dat$y <- with(dat, 1.5 + sin(x1) + sp + re + rnorm(n, sd = 0.6))

## estimate model
b2 <- bayesx(y ~ sx(x1) + sx(id, bs = "mrf", map = MunichBnd) +

sx(id, bs = "re"), method = "MCMC", data = dat)

## summary statistics
summary(b2)
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## plot structured spatial effect
plot(b2, term = "sx(id)", map = MunichBnd)

## plot unstructured spatial effect
plot(b2, term = "sx(id):re", map = MunichBnd)

## now without map
## generates a kernel density plot
## of the effects
plot(b2, term = "sx(id):mrf", map = FALSE)
plot(b2, term = "sx(id):re", map = FALSE)

## with approximate quantiles of the
## kernel density estimate
plot(b2, term = "sx(id):re", map = FALSE,

kde.quantiles = TRUE, probs = c(0.025, 0.5, 0.975))

## plot the total spatial effect
plot(b2, term = "sx(id):total")
plot(b2, term = "sx(id):total", map = MunichBnd)

## combine model objects
b <- c(b1, b2)

## plot first term of second model
plot(b, model = 2, term = 1)
plot(b, model = "b2", term = "sx(x1)")

## plot second term of both models
plot(b, term = 2, map = MunichBnd)

## plot everything
plot(b)

## End(Not run)

plot2d 2D Effect Plot

Description

Function to plot simple 2D graphics for univariate effects/functions, typically used for objects of
class "linear.bayesx" and "sm.bayesx" returned from function bayesx and read.bayesx.output.

Usage

plot2d(x, residuals = FALSE, rug = TRUE, jitter = TRUE,
col.residuals = NULL, col.lines = NULL, col.polygons = NULL,
col.rug = NULL, c.select = NULL, fill.select = NULL,
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data = NULL, sep = "", month = NULL, year = NULL,
step = 12, shift = NULL, trans = NULL, ...)

Arguments

x a matrix or data frame, containing the covariate for which the effect should
be plotted in the first column and at least a second column containing the ef-
fect, typically the structure for univariate functions returned within bayesx and
read.bayesx.output model term objects is used, also see fitted.bayesx.
Another possibility is to specify the plot via a formula, e.g. y ~ x, also see the
example. x may also be a character file path to the data to be used for plotting.

residuals if set to TRUE, partial residuals may also be plotted if available.

rug add a rug to the plot.

jitter if set to TRUE a jittered rug plot is added.

col.residuals the color of the partial residuals.

col.lines the color of the lines.

col.polygons specify the background color of polygons, if x has at least 3 columns, i.e. column
2 and 3 can form one polygon.

col.rug specify the color of the rug representation.

c.select integer vector of maximum length of columns of x, selects the columns of the
resulting data matrix that should be used for plotting. E.g. if x has 5 columns,
then c.select = c(1, 2, 5) will select column 1, 2 and 5 for plotting. Note that
first element of c.select should always be the column that holds the variable
for the x-axis.

fill.select integer vector, select pairwise the columns of the resulting data matrix that
should form one polygon with a certain background color specified in argu-
ment col. E.g. x has three columns, or is specified with formula f1 + f2 ~ x,
then setting fill.select = c(0, 1, 1) will draw a polygon with f1 and f2 as
boundaries. If x has five columns or the formula is e.g. f1 + f2 + f3 + f4 ~ x,
then setting fill.select = c(0, 1, 1, 2, 2), the pairs f1, f2 and f3, f4 are
selected to form two polygons.

data if x is a formula, a data.frame or list. By default the variables are taken from
environment(x): typically the environment from which plot2d is called. Note
that data may also be a character file path to the data.

sep the field separator character when x or data is a character, see function read.table.
month, year, step

provide specific annotation for plotting estimation results for temporal variables.
month and year define the minimum time point whereas step specifies the type
of temporal data with step = 4, step = 2 and step = 1 corresponding to quar-
tely, half yearly and yearly data.

shift numeric. Constant to be added to the smooth before plotting.

trans function to be applied to the smooth before plotting, e.g., to transform the plot
to the response scale.

... other graphical parameters, please see the details.
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Details

For 2D plots the following graphical parameters may be specified additionally:

• cex: specify the size of partial residuals,

• lty: the line type for each column that is plotted, e.g. lty = c(1, 2),

• lwd: the line width for each column that is plotted, e.g. lwd = c(1, 2),

• poly.lty: the line type to be used for the polygons,

• poly.lwd: the line width to be used for the polygons,

• density angle, border: see polygon,

• ...: other graphical parameters, see function plot.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

plot.bayesx, bayesx, read.bayesx.output, fitted.bayesx.

Examples

## generate some data
set.seed(111)
n <- 500
## regressor
dat <- data.frame(x = runif(n,-3,3))

## response
dat$y <- with(dat, 10 + sin(x) + rnorm(n,sd=0.6))

## Not run:
## estimate model
b <- bayesx(y ~ sx(x), data = dat)
summary(b)

## plot estimated effect
plot(b, which = 1)
plot(b, which = 1, rug = FALSE)

## extract fitted effects
f <- fitted(b, term = "sx(x)")

## now use plot2d
plot2d(f)
plot2d(f, residuals = TRUE)
plot2d(f, residuals = TRUE, pch = 2, col.resid = "green3")
plot2d(f, col.poly = NA, lwd = 1, lty = 1)
plot2d(f, col.poly = NA, lwd = 1, lty = 1, col.lines = 4)
plot2d(f, col.poly = c(2, 3), lwd = 1, col.lines = 4, lty = 1)
plot2d(f, lwd = c(1, 3, 2, 2, 3), col.poly = NA, lty = 1)
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plot2d(f, lwd = c(1, 3, 2, 2, 3), col.poly = NA, lty = 1, col.lines = 2:6)
plot2d(f, lwd = c(1, 3, 2, 2, 3), col.poly = NA, lty = 1, col.lines = 2:6,

resid = TRUE, pch = 4, col.resid = 7)

## End(Not run)

## another variation
plot2d(sin(x) ~ x, data = dat)
dat$f <- with(dat, sin(dat$x))
plot2d(f ~ x, data = dat)
dat$f1 <- with(dat, f + 0.1)
dat$f2 <- with(dat, f - 0.1)
plot2d(f1 + f2 ~ x, data = dat)
plot2d(f1 + f2 ~ x, data = dat, fill.select = c(0, 1, 1), lty = 0)
plot2d(f1 + f2 ~ x, data = dat, fill.select = c(0, 1, 1), lty = 0,

density = 20, poly.lty = 1, poly.lwd = 2)
plot2d(f1 + f + f2 ~ x, data = dat, fill.select = c(0, 1, 0, 1),

lty = c(0, 1, 0), density = 20, poly.lty = 1, poly.lwd = 2)

plot3d 3D Effect Plot

Description

Function to plot 3D graphics or image and/or contour plots for bivariate effects/functions, typi-
cally used for objects of class "sm.bayesx" and "geo.bayesx" returned from function bayesx and
read.bayesx.output.

Usage

plot3d(x, residuals = FALSE, col.surface = NULL,
ncol = 99L, swap = FALSE, col.residuals = NULL, col.contour = NULL,
c.select = NULL, grid = 30L, image = FALSE, contour = FALSE,
legend = TRUE, cex.legend = 1, breaks = NULL, range = NULL,
digits = 2L, d.persp = 1L, r.persp = sqrt(3), outscale = 0,
data = NULL, sep = "", shift = NULL, trans = NULL,
type = "interp", linear = FALSE, extrap = FALSE,
k = 40, ...)

Arguments

x a matrix or data frame, containing the covariates for which the effect should be
plotted in the first and second column and at least a third column containing
the effect, typically the structure for bivariate functions returned within bayesx
and read.bayesx.output model term objects is used, also see fitted.bayesx.
Another possibility is to specify the plot via a formula, e.g. for simple plotting
of bivariate surfaces z ~ x + y, also see the example. x may also be a character
file path to the data to be used for plotting.
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residuals if set to TRUE, partial residuals may also be plotted if available.

col.surface the color of the surface, may also be a function, e.g. col.surface = heat.colors.

ncol the number of different colors that should be generated, if col.surface is a
function.

swap if set to TRUE colors will be represented in reverse order.

col.residuals the color of the partial residuals, or if contour = TRUE the color of the contour
lines.

col.contour the color of the contour lines.

c.select integer vector of maximum length of columns of x, selects the columns of
the resulting data matrix that should be used for plotting. E.g. if x has 5
columns, then c.select = c(1, 2, 5) will select column 1, 2 and 5 for plot-
ting. If c.select = 95 or c.select = 80, function plot3d will search for the
corresponding columns to plot a 95% or 80% confidence surfaces respectively.
Note that if e.g. c.select = c(1, 2), plot3d will use columns 1 + 2 and 2 + 2
for plotting.

grid the grid size of the surface(s).

image if set to TRUE, an image.plot is drawn.

contour if set to TRUE, a contour plot is drawn.

legend if image = TRUE an additional legend may be added to the plot.

cex.legend the expansion factor for the legend text, see text.

breaks a set of breakpoints for the colors: must give one more breakpoint than ncol.

range specifies a certain range values should be plotted for.

digits specifies the legend decimal places.

d.persp see argument d in function persp.

r.persp see argument r in function persp.

outscale scales the outer ranges of x and z limits used for interpolation.

data if x is a formula, a data.frame or list. By default the variables are taken
from environment(x): typically the environment from which plot3d is called.
Note that data may also be a character file path to the data.

sep the field separator character when x or data is a character, see function read.table.

shift numeric. Constant to be added to the smooth before plotting.

trans function to be applied to the smooth before plotting, e.g., to transform the plot
to the response scale.

type character. Which type of interpolation metjod should be used. The default
is type = "interp", see function interp. The two other options are type =
"mba", which calls function mba.surf of package MBA, or type = "mgcv",
which uses a spatial smoother withing package mgcv for interpolation. The
last option is definitely the slowest, since a full regression model needs to be
estimated.

linear logical. Should linear interpolation be used withing function interp?

extrap logical. Should interpolations be computed outside the observation area (i.e.,
extrapolated)?
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k integer. The number of basis functions to be used to compute the interpolated
surface when type = "mgcv".

... parameters passed to colorlegend if an image plot with legend is drawn, also
other graphical parameters, please see the details.

Details

For 3D plots the following graphical parameters may be specified additionally:

• cex: specify the size of partial residuals,

• col: it is possible to specify the color for the surfaces if se > 0, then e.g. col = c("green",
"black", "red"),

• pch: the plotting character of the partial residuals,

• ...: other graphical parameters passed functions persp, image.plot and contour.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

plot.bayesx, bayesx, read.bayesx.output, fitted.bayesx, colorlegend.

Examples

## generate some data
set.seed(111)
n <- 500

## regressors
dat <- data.frame(z = runif(n, -3, 3), w = runif(n, 0, 6))

## response
dat$y <- with(dat, 1.5 + cos(z) * sin(w) + rnorm(n, sd = 0.6))

## Not run:
## estimate model
b <- bayesx(y ~ sx(z, w, bs = "te", knots = 5), data = dat, method = "REML")
summary(b)

## plot estimated effect
plot(b, term = "sx(z,w)")

## extract fitted effects
f <- fitted(b, term = "sx(z,w)")

## now use plot3d
plot3d(f)
plot3d(f, swap = TRUE)
plot3d(f, residuals = TRUE)
plot3d(f, resid = TRUE, cex.resid = 0.1)
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plot3d(f, resid = TRUE, pch = 2, col.resid = "green3")
plot3d(f, resid = TRUE, c.select = 95, cex.resid = 0.1)
plot3d(f, resid = TRUE, c.select = 80, cex.resid = 0.1)
plot3d(f, grid = 100, border = NA)
plot3d(f, c.select = 95, border = c("red", NA, "green"),

col.surface = c(1, NA, 1), resid = TRUE, cex.resid = 0.2)

## now some image and contour
plot3d(f, image = TRUE, legend = FALSE)
plot3d(f, image = TRUE, legend = TRUE)
plot3d(f, image = TRUE, contour = TRUE)
plot3d(f, image = TRUE, contour = TRUE, swap = TRUE)
plot3d(f, image = TRUE, contour = TRUE, col.contour = "white")
plot3d(f, contour = TRUE)
op <- par(no.readonly = TRUE)
par(mfrow = c(1, 3))
plot3d(f, image = TRUE, contour = TRUE, c.select = 3)
plot3d(f, image = TRUE, contour = TRUE, c.select = "Estimate")
plot3d(f, image = TRUE, contour = TRUE, c.select = "97.5
par(op)

## End(Not run)

## another variation
dat$f1 <- with(dat, sin(z) * cos(w))
with(dat, plot3d(cbind(z, w, f1)))

## same with formula
plot3d(sin(z) * cos(w) ~ z + w, zlab = "f(z,w)", data = dat)
plot3d(sin(z) * cos(w) ~ z + w, zlab = "f(z,w)", data = dat,

ticktype = "detailed")

## play with palettes
plot3d(sin(z) * cos(w) ~ z + w, col.surface = heat.colors, data = dat)
plot3d(sin(z) * cos(w) ~ z + w, col.surface = topo.colors, data = dat)
plot3d(sin(z) * cos(w) ~ z + w, col.surface = cm.colors, data = dat)
plot3d(sin(z) * cos(w) ~ z + w, col.surface = rainbow, data = dat)
plot3d(sin(z) * cos(w) ~ z + w, col.surface = terrain.colors, data = dat)

plot3d(sin(z) * cos(w) ~ z + w, col.surface = rainbow_hcl, data = dat)
plot3d(sin(z) * cos(w) ~ z + w, col.surface = diverge_hcl, data = dat)
plot3d(sin(z) * cos(w) ~ z + w, col.surface = sequential_hcl, data = dat)

plot3d(sin(z) * cos(w) ~ z + w,
col.surface = rainbow_hcl(n = 99, c = 300, l = 80, start = 0, end = 100),
data = dat)

plot3d(sin(z) * cos(w) ~ z + w,
col.surface = rainbow_hcl(n = 99, c = 300, l = 80, start = 0, end = 100),
image = TRUE, grid = 200, data = dat)

plotblock Factor Variable and Random Effects Plots
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Description

Function to plot effects for model terms including factor, or group variables for random effects,
typically used for objects created within bayesx or read.bayesx.output.

Usage

plotblock(x, residuals = FALSE, range = c(0.3, 0.3),
col.residuals = "black", col.lines = "black", c.select = NULL,
fill.select = NULL , col.polygons = NULL, data = NULL,
shift = NULL, trans = NULL, ...)

Arguments

x either a list of length of the unique factors, where each list element con-
tains the estimated effects for one factor as a matrix, see fitted.bayesx, or
one data matrix with first column as the group or factor variable. Also formulas
are accepted, e.g it is possible to specify the plot with f ~ x or f1 + f2 ~ x. By
convention, the covariate for which effects should be plotted, is always in the
first column in the resulting data matrix, that is used for plotting, i.e. in the sec-
ond formula example, the data matrix is cbind(x, f1, f2), also see argument
c.select and fill.select.

residuals if set to TRUE, partial residuals will be plotted if available. Partial residuals
may be set as an attribute of x named "partial.resids", where the partial
residuals must be a matrix with first column specifying the covariate, and second
column the partial residuals that should be plotted.

range numeric vector, specifying the left and right bound of the block.

col.residuals the color of the partial residuals.

col.lines vector of maximum length of columns of x minus 1, specifying the color of the
lines.

c.select integer vector of maximum length of columns of x, selects the columns of the
resulting data matrix that should be used for plotting. E.g. if x has 5 columns,
then c.select = c(1, 2, 5) will select column 1, 2 and 5 for plotting. Note
that first element of c.select should always be 1, since this is the column of
the covariate the effect is plotted for.

fill.select integer vector, select pairwise the columns of the resulting data matrix that
should form one polygon with a certain background color specified in argu-
ment col. E.g. x has three columns, or is specified with formula f1 + f2 ~ x,
then setting fill.select = c(0, 1, 1) will draw a polygon with f1 and f2 as
boundaries. If x has five columns or the formula is e.g. f1 + f2 + f3 + f4 ~ x,
then setting fill.select = c(0, 1, 1, 2, 2), the pairs f1, f2 and f3, f4 are
selected to form two polygons.

col.polygons specify the background color for the upper and lower confidence bands, e.g. col
= c("green", "red").

data if x is a formula, a data.frame or list. By default the variables are taken from
environment(x): typically the environment from which plotblock is called.

shift numeric. Constant to be added to the smooth before plotting.
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trans function to be applied to the smooth before plotting, e.g., to transform the plot
to the response scale.

... graphical parameters, please see the details.

Details

Function plotblock draws for every factor or group the effect as a "block" in one graphic, i.e.
similar to boxplots, estimated fitted effects, e.g. containing quantiles for MCMC estimated models,
are drawn as one block, where the upper lines represent upper quantiles, the middle line the mean or
median, and lower lines lower quantiles, also see the examples. The following graphical parameters
may be supplied additionally:

• cex: specify the size of partial residuals,

• lty: the line type for each column that is plotted, e.g. lty = c(1, 2),

• lwd: the line width for each column that is plotted, e.g. lwd = c(1, 2),

• poly.lty: the line type to be used for the polygons,

• poly.lwd: the line width to be used for the polygons,

• density angle, border: see polygon,

• ...: other graphical parameters, see function plot.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

plot.bayesx, bayesx, read.bayesx.output, fitted.bayesx.

Examples

## generate some data
set.seed(111)
n <- 500

## regressors
dat <- data.frame(fac = factor(rep(1:10, n/10)))

## response
dat$y <- with(dat, 1.5 + c(2.67, 5, 6, 3, 4, 2, 6, 7, 9, 7.5)[fac] +

rnorm(n, sd = 0.6))

## Not run:
## estimate model
b <- bayesx(y ~ fac, data = dat)
summary(b)

## plot factor term effects
plot(b, term = "fac")
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## extract fitted effects
f <- fitted(b, term = "fac")

## now use plotblock
plotblock(f)

## some variations
plotblock(f, col.poly = c(2, 3))
plotblock(f, col.poly = NA, lwd = c(2, 1, 1, 1, 1))
plotblock(f, col.poly = NA, lwd = 3, range = c(0.5,0.5))
plotblock(f, col.poly = NA, lwd = 3, col.lines = 1:5, lty = 1)
plotblock(f, col.poly = NA, lwd = 3, col.lines = 1:5,

lty = c(3, 1, 2, 2, 1))
plotblock(f, resid = TRUE)
plotblock(f, resid = TRUE, cex = 0.1)
plotblock(f, resid = TRUE, cex = 0.1, col.resid = 2)
plotblock(f, resid = TRUE, cex = 2, col.resid = 3, pch = 3)
plotblock(f, lty = 0, poly.lty = 1, density = c(5, 20))
plotblock(f, lty = 0, poly.lty = 1, density = c(5, 20),

poly.lwd = c(1, 2))
plotblock(f, lty = 0, poly.lty = c(1, 2), density = c(5, 20))
plotblock(f, lty = 0, poly.lty = c(1, 2), density = c(5, 20),

border = c("red", "green3"))
plotblock(f, lty = 0, poly.lty = c(1, 2), density = c(5, 20),

border = c("red", "green3"), col.poly = c("blue", "yellow"))
plotblock(f, lty = c(1,0,0,0,0), poly.lty = c(1, 2),

density = c(5, 20), border = c("red", "green3"),
col.poly = c("blue", "yellow"))

plotblock(f, lty = c(1,0,0,0,0), poly.lty = c(1, 2),
density = c(20, 20), border = c("red", "green3"),
col.poly = c("blue", "yellow"), angle = c(10, 75))

## End(Not run)

## another example
plotblock(y ~ fac, data = dat, range = c(0.45, 0.45))

dat <- data.frame(fac = factor(rep(1:10, n/10)))
dat$y <- with(dat, c(2.67, 5, 6, 3, 4, 2, 6, 7, 9, 7.5)[fac])
plotblock(y ~ fac, data = dat)
plotblock(cbind(y - 0.1, y + 0.1) ~ fac, data = dat)
plotblock(cbind(y - 0.1, y + 0.1) ~ fac, data = dat,

fill.select = c(0, 1, 1))
plotblock(cbind(y - 0.1, y + 0.1) ~ fac, data = dat,

fill.select = c(0, 1, 1), poly.lty = 2, lty = 1,
border = "grey5")

plotmap Plot Maps
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Description

The function takes a list polygons and draws the corresponding map. Different colors for each
polygon can be used. Typically used for objects of class "mrf.bayesx" and "random.bayesx"
returned from function bayesx and read.bayesx.output.

Usage

plotmap(map, x = NULL, id = NULL, c.select = NULL, legend = TRUE,
missing = TRUE, swap = FALSE, range = NULL, names = FALSE,
values = FALSE, col = NULL, ncol = 100, breaks = NULL,
cex.legend = 1, cex.names = 1, cex.values = cex.names, digits = 2L,
mar.min = 2, add = FALSE, interp = FALSE, grid = 200,
land.only = FALSE, extrap = FALSE, outside = FALSE, type = "interp",
linear = FALSE, k = 40, p.pch = 15, p.cex = 1, shift = NULL,
trans = NULL, ...)

Arguments

map the map to be plotted, the map object must be a list of matrices with first
column indicating the x coordinate and second column the y coordinate each,
also see polygon.

x a matrix or data frame with two columns, first column indicates the region and
second column the the values which will define the background colors of the
polygons, e.g. fitted values from bayesx. More columns are possible, e.g. quan-
tiles, which can accessed with argument se.

id if argument x is a vector, argument id should contain a character vector of the
same length of x with entries indicating the polygon the i-th value of x belongs
to, i.e. id must contain the same names as polygon names in map.

c.select select the column of the data in x which should be used for plotting, may be an
integer or character with the corresponding column name.

legend if set to TRUE, a legend will be shown.

missing should polygons be plotted for which no data is available in x?

swap if set to TRUE, colors will be represented in reverse order.

range specify the range of values in x which should enter the plot, e.g. only values
between -2 and 2 are of interest then range = c(-2, 2).

names if set to TRUE the name for each polygon will also be plotted at the centroids of
the corresponding polygons.

values if set to TRUE the corresponding values for each polygon will also be plotted at
the centroids of the polygons.

col the color of the surface, may also be a function, e.g. col.surface = heat.colors.

ncol the number of different colors that should be generated if col is a function.

breaks a set of breakpoints for the colors: must give one more breakpoint than ncol.

cex.legend text size of the numbers in the legend.

cex.names text size of the names if names = TRUE.
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cex.values text size of the names if values = TRUE.

digits specifies the legend decimal places.

mar.min Controls the definition of boundaries. Could be either NULL for individual set-
tings of mar or a value which defines mar as follows: The boundaries will be cal-
culated according to the height to width ratio of the map with minimal boundary
mar.min.

add if set to TRUE, the map will be added to an existing plot.

interp logical. Should the values provided in argument x be interpolated to obtain a
smooth colored map.

grid integer. Defines the number of grid cells to be used for interpolation.

land.only if set to TRUE, only interpoltated pixels that cover land are drawn, see also func-
tion map.where.

extrap logical. Should interpolations be computed outside the observation area (i.e.,
extrapolated)?

outside logical. Should interpolated values outside the boundaries of the map be plotted.

type character. Which type of interpolation metjod should be used. The default
is type = "interp", see function interp. The two other options are type =
"mba", which calls function mba.surf of package MBA, or type = "mgcv",
which uses a spatial smoother withing package mgcv for interpolation. The
last option is definitely the slowest, since a full regression model needs to be
estimated.

linear logical. Should linear interpolation be used withing function interp?

k integer. The number of basis functions to be used to compute the interpolated
surface when type = "mgcv".

p.pch numeric. The point size of the grid cells when using interpolation.

p.cex numeric. The size of the grid cell points whein using interpolation.

shift numeric. Constant to be added to the smooth before plotting.

trans function to be applied to the smooth before plotting, e.g., to transform the plot
to the response scale.

... parameters to be passed to colorlegend and others, e.g. change the border of
the polygons and density, see polygon. Please see the exmaples.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

plot.bayesx, read.bnd, colorlegend.
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Examples

## load a sample map
data("FantasyBnd")

## plot the map
op <- par(no.readonly = TRUE)
plotmap(FantasyBnd, main = "Example of a plain map")
plotmap(FantasyBnd, lwd = 1, main = "Example of a plain map")
plotmap(FantasyBnd, lwd = 1, lty = 2)
plotmap(FantasyBnd, lwd = 1, lty = 2, border = "green3")
plotmap(FantasyBnd, lwd = 1, lty = 2, border = "green3",

density = 50)
plotmap(FantasyBnd, lwd = 1, lty = 2,

border = c("red", "green3"),
density = c(10, 20), angle = c(5, 45))

plotmap(FantasyBnd, lwd = 1, lty = 2,
border = c("red", "green3"),
density = c(10, 20), angle = c(5, 45),
col = c("blue", "yellow"))

plotmap(FantasyBnd, col = gray.colors(length(FantasyBnd)))

## add some values to the corresponding polygon areas
## note that the first column in matrix val contains
## the region identification index
x <- cbind(as.integer(names(FantasyBnd)), runif(length(FantasyBnd), -2, 2))
plotmap(FantasyBnd, x = x)

## now only plot values for some certain regions
set.seed(432)
samps <- sample(x[,1], 4)
nx <- x[samps,]
plotmap(FantasyBnd, x = nx, density = 20)

## play with legend
plotmap(FantasyBnd, x = x, names = TRUE, legend = FALSE)
plotmap(FantasyBnd, x = nx, density = 20, pos = c(0, 1))
plotmap(FantasyBnd, x = nx, density = 20, pos = c(0, 0.8),

side.legend = 2)
plotmap(FantasyBnd, x = nx, density = 20, pos = c(0, 0.8),

side.legend = 2, side.tick = 2)
plotmap(FantasyBnd, x = nx, density = 20, pos = c(0, 0.8),

side.legend = 2, side.tick = 2, cex.legend = 0.5)
plotmap(FantasyBnd, x = x, values = TRUE,

pos = c(-0.15, -0.12))
plotmap(FantasyBnd, x = nx, values = TRUE,

pos = c(-0.07, -0.22), width = 2,
at = nx[,2], side.legend = 2, distance.labels = 3,
density = 20)

plotmap(FantasyBnd, x = nx, values = TRUE,
pos = c(-0.07, -0.22), width = 2,
at = nx[,2], side.legend = 2, distance.labels = 3,
density = 20, symmetric = FALSE,
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col = heat_hcl, swap = TRUE)
plotmap(FantasyBnd, x = nx, values = TRUE,

pos = c(-0.07, -0.22), width = 2,
at = nx[,2], side.legend = 2, distance.labels = 3,
density = 20, symmetric = FALSE,
col = heat_hcl, swap = TRUE, range = c(-5, 5))

plotmap(FantasyBnd, x = nx, values = TRUE,
pos = c(-0.07, -0.22), width = 2,
at = nx[,2], side.legend = 2, distance.labels = 3,
density = 20, symmetric = FALSE,
col = heat_hcl, swap = TRUE, lrange = c(-5, 5))

plotmap(FantasyBnd, x = nx, values = TRUE,
pos = c(-0.07, -0.22), width = 2,
at = nx[,2], side.legend = 2, distance.labels = 3,
density = 20, symmetric = FALSE,
col = heat_hcl, swap = TRUE,
ncol = 4, breaks = seq(-2, 2, length = 5))

## more position options
plotmap(FantasyBnd, x = nx, density = 20, pos = "bottomleft")
plotmap(FantasyBnd, x = nx, density = 20, pos = "topleft")
plotmap(FantasyBnd, x = nx, density = 20, pos = "topright")
plotmap(FantasyBnd, x = nx, density = 20, pos = "bottomright")
plotmap(FantasyBnd, x = nx, density = 20, pos = "right")
par(op)

# load and plot a map from GermanyBnd
op <- par(no.readonly = TRUE)
data("GermanyBnd")
plotmap(GermanyBnd, main = "Map of GermanyBnd")
n <- length(GermanyBnd)

# add some colors
plotmap(GermanyBnd, col = rainbow(n))
plotmap(GermanyBnd, col = heat.colors(n))
plotmap(GermanyBnd, col = topo.colors(n))
plotmap(GermanyBnd, col = cm.colors(n))
plotmap(GermanyBnd, col = gray.colors(n))
plotmap(GermanyBnd, col = c("green", "green3"))
par(op)

## now with bayesx
set.seed(333)

## simulate some geographical data
data("MunichBnd")
N <- length(MunichBnd); names(MunichBnd) <- 1:N
n <- N*5

## regressors
dat <- data.frame(id = rep(1:N, n/N))
dat$sp <- with(dat, sort(runif(N, -2, 2), decreasing = TRUE)[id])
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## response
dat$y <- with(dat, 1.5 + sp + rnorm(n, sd = 0.6))

## Not run:
## estimate model
b <- bayesx(y ~ sx(id, bs = "mrf", map = MunichBnd),

method = "MCMC", data = dat)

## summary statistics
summary(b)

## plot spatial effect
op <- par(no.readonly = TRUE)
plot(b, map = MunichBnd)
plot(b, map = MunichBnd, c.select = "97.5
plot(b, map = MunichBnd, c.select = "2.5
plot(b, map = MunichBnd, c.select = "50
plot(b, map = MunichBnd, names = TRUE,

cex.names = 0.5, cex.legend = 0.8)
plot(b, map = MunichBnd, range = c(-0.5, 0.5))
plot(b, map = MunichBnd, range = c(-5, 5))
plot(b, map = MunichBnd, col = heat_hcl,

swap = TRUE, symmetric = FALSE)
par(op)

## End(Not run)

plotsamples Plot Sampling Path(s) of Coefficient(s) and Variance(s)

Description

This function plots the sampling paths of coefficient(s) and variance(s) stored in model term objects
typically returned from function bayesx or read.bayesx.output.

Usage

plotsamples(x, selected = "NA", acf = FALSE, var = FALSE,
max.acf = FALSE, subset = NULL, ...)

Arguments

x a vector or matrix, where each column represents a different sampling path to
be plotted.

selected a character string containing the term name the sampling paths are plotted for.

acf if set to TRUE, the autocorrelation function for each sampling path is plotted.

var indicates whether coefficient or variance sampling paths are displayed and sim-
ply changes the main title.
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max.acf if set to TRUE, plotsamples will evaluate the maximum autocorrelation over all
parameters of each sample.

subset integer. An index which selects the coefficients for which sampling paths should
be plotted.

... other graphical parameters to be passed to plot and acf, e.g. argument lag.max
if acf = TRUE. An argument ask controls the display when more than 12 sam-
pling paths should be plotted.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

plot.bayesx, bayesx, read.bayesx.output.

Examples

## generate some data
set.seed(111)
n <- 500

## regressors
dat <- data.frame(x = runif(n, -3, 3))

## response
dat$y <- with(dat, 1.5 + sin(x) + rnorm(n, sd = 0.6))

## Not run:
## estimate model
b <- bayesx(y ~ sx(x), data = dat)
summary(b)

## plot sampling path for
## the variance
plot(b, term = "sx(x)", which = "var-samples")

## plot sampling paths for
## coefficients
plot(b, term = "sx(x)", which = "coef-samples")

## plot maximum autocorrelation of
## all sampled parameters of term s(x)
plot(b, term = "sx(x)", which = "coef-samples", max.acf = TRUE)

## extract samples of term sx(x)
sax <- as.matrix(samples(b, term = "sx(x)"))

## now use plotsamples
plotsamples(sax, selected = "sx(x)")
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## some variations
plotsamples(sax, selected = "sx(x)", acf = TRUE)
plotsamples(sax, selected = "sx(x)", acf = TRUE, lag.max = 200)

## End(Not run)

predict.bayesx Prediction from fitted BayesX objects

Description

Takes a fitted "bayesx" object returned from bayesx and produces predictions by refitting the initial
model with weights set to zero for new observations.

Usage

## S3 method for class 'bayesx'
predict(object, newdata, model = NULL,
type = c("response", "link", "terms", "model"),
na.action = na.pass, digits = 5, ...)

Arguments

object an object of class "bayesx" or "bayesx.hpc".

newdata a data frame or list containing the values of the model covariates at which pre-
dictions are required. If missing newdata is the model.frame of the provided
model.

model for which model should predictions be calculated, either an integer or a charac-
ter, e.g. model = "mcmc.model". Note that exactly one model must be selected
within argument model to compute predicted values!

type when type = "response", the default, predictions on the scale of the response
are returned, "link" returns the linear predictor. When type = "terms", each
component of the linear predictor is returned, but excludes any offset and inter-
cept. If type = "model", the full model returned from updating the initial model
with weights, that is used for computing predictions, is returned.

na.action function determining what should be done with missing values in newdata.

digits predictions should usually be based on the new values provided in argument
newdata. However, since this prediction method uses refitting of the model
with weights, predictions for model terms need to be matched with the new
observations. BayesX returns values with a lower precision than R, therefore
argument digits is used to round values when type = "terms", to find match-
ing newdata pairs in the fitted objects returned from the refitted model and the
new data. Note that this is a workaround and not 100% bulletproof. It is recom-
mended to compute predictions for type = "response" or type = "link".

... not used.
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Value

Depending on the specifications of argument type.

Note

This prediction method is based on refitting the initial model with weights, i.e., if new observations
lie outside the domain of the respective covariate, the knot locations when using e.g. P-splines are
calculated using the old and the new data. Hence, if there are large gaps between the old data domain
and new observations, this could affect the overall fit of the estimated spline, i.e., compared to the
initial model fit there will be smaller or larger differences depending on the newdata provided.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

fitted.bayesx, bayesx.

Examples

## Not run:
## generate some data
set.seed(121)
n <- 500

## regressors
dat <- data.frame(x = runif(n, -3, 3), z = runif(n, 0, 1),

w = runif(n, 0, 3))

## generate response
dat$y <- with(dat, 1.5 + sin(x) + z -3 * w + rnorm(n, sd = 0.6))

## estimate model
b <- bayesx(y ~ sx(x) + z + w, data = dat)

## create some data for which predictions are required
nd <- data.frame(x = seq(2, 5, length = 100), z = 1, w = 0)

## prediction model from refitting with weights
nd$fit <- predict(b, newdata = nd)
plot(fit ~ x, type = "l", data = nd)

## End(Not run)
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read.bayesx.output Read BayesX Output from Directories

Description

This function automatically reads in BayesX estimation output which is stored in an output direc-
tory.

Usage

read.bayesx.output(dir, model.name = NULL)

Arguments

dir a character string, specifies the directory file where BayesX output is stored.
model.name a character string, specifies the base name of the model that should be read in,

also see the examples. If not supplied read.bayesx.output tries to read in all
existing model outputs in dir, every model is then stored as one element in the
output list. By convention, read.bayesx.output searches for existing .tex
output files, and others, to identify different models in the dir folder.

Details

The function searches for model term objects in the specified directory, which are then stored in
a list. Each model term object will be of class xx.bayesx, so the generic functions described
in plot.bayesx may be applied for visualizing the results. In addition summary statistics of the
models may be printed to the R console with summary.bayesx.

Value

read.bayesx.output typically returns a list of class "bayesx" with the first element containing a
list with the following objects:

formula the STAR formula used,
bayesx.setup an object of class "bayesx.input", see parse.bayesx.input,
bayesx.prg a character containing the .prg file used for estimation with run.bayesx,
bayesx.run details on processing with run.bayesx,
call the original function call,
fitted.values the fitted values of the estimated model,
residuals the residuals of the estimated model,
effects a list containing fitted effects of model terms, also see fitted.bayesx and

samples,
fixed.effects a matrix with estimation results for fixed effects,
variance estimation results for the variance parameter of the model,
smooth.hyp a matrix with estimation results smooth terms,
model.fit list containing additional information to be supplied to summary.bayesx.
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Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

summary.bayesx, plot.bayesx, samples.

Examples

## load example data from
## package example folder
dir <- file.path(find.package("R2BayesX"), "/examples/ex01")
b <- read.bayesx.output(dir)

## some model summaries
print(b)
summary(b)

## now plot estimated effects
plot(b)

## 2nd example
dir <- file.path(find.package("R2BayesX"), "/examples/ex02")
list.files(dir)

## dir contains of 2 different
## base names
## 01 only one nonparametric effect
b <- read.bayesx.output(dir, model.name = "nonparametric")
plot(b)

## 02 only one bivariate
## nonparametric effect
b <- read.bayesx.output(dir, model.name = "surface")
plot(b)

read.bnd Read Geographical Information in Boundary Format

Description

Reads the geographical information provided in a file in boundary format and stores it in a map
object.

Usage

read.bnd(file, sorted = FALSE)
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Arguments

file name of the boundary file to be read.

sorted should the regions be ordered by the numbers speciying the region names (sorted
= TRUE)?

Details

A boundary file provides the boundary information of a geographical map in terms of closed poly-
gons. For each region of the map, the boundary file contains a block of lines defining the name of
the region, the number of lines the polygon consists of, and the polygons themselves. The first line
of such a block contains the region code surrounded by quotation marks and the number of lines the
polygon of the region consists of. The region code and the number of lines must be separated by a
comma. The subsequent lines contain the coordinates of the straight lines that form the boundary
of the region. The straight lines are represented by the coordinates of their end points. Coordinates
must be separated by a comma.

The following is an example of a boundary file as provided in file Germany.bnd in the examples
folder of this package.

"1001",9
2534.64771,8409.77539
2554.54712,8403.92285
2576.78735,8417.96973
2592.00439,8366.46582
2560.39966,8320.81445
2507.72534,8319.64453
2496.02002,8350.07813
2524.11304,8365.29492
2534.64771,8409.77539
"1002",18
2987.64697,7774.17236
2954.87183,7789.38916
. . .

Hence, the region code of the first region is "1001" and contains of 9 points that form its polygon.
The second region has region code "1002" and contains of 18 polygon points (note that only the
first two points are shown).

Value

Returns a list of polygons that form the map. Additional attributes are

surrounding Parallel list where for each polygon, the name of a possible surrounding region
is saved.

height2width Ratio between height and width of the map. Allows customised drawing and
storage in files by specifying the appropriate height and width.
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Author(s)

Daniel Sabanes Bove, Felix Heinzl, Thomas Kneib, Andreas Brezger.

References

BayesX Reference Manual. Available at https://www.uni-goettingen.de/de/bayesx/550513.
html.

See Also

write.bnd, plotmap, read.gra, write.gra.

Examples

file <- file.path(find.package("R2BayesX"), "examples", "Germany.bnd")
germany <- read.bnd(file)
plotmap(germany)

read.gra Read Geographical Information in Graph Format

Description

Reads the geographical information provided in a file in graph format and stores it in a map object.

Usage

read.gra(file, sorted = FALSE, sep = " ")

Arguments

file the file path of the graph file to be read.
sorted logical. Should the regions be ordered by the numbers specifying the region

names (sorted = TRUE)?
sep the field separator character. Values on each line of the file are separated by this

character.

Details

A graph file stores the nodes and the edges of a graph and is a convenient way to represent the
neighborhood structure of a geographical map. The structure of a graph file is given by:

• The first line of the graph file specifies the total number of nodes.
• The subsequent three lines correspond to the node with the name given in line 2, the number

of neighbors in line 3 and the neighboring node identity numbers in line 4.

Note that the note identity numbering starts with 0. Example taken from the package example file
Germany.gra:

https://www.uni-goettingen.de/de/bayesx/550513.html
https://www.uni-goettingen.de/de/bayesx/550513.html
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309
1001
1
1
1059
3
0 3 4
1002
2
5 4
1051
3
4 1 9
1058
7
2 6 3 5 1 10 9
. . .

Hence, this graph file contains of 309 regions. The first region with name 1001 has 1 neighbor with
neighboring node identity number 1. The last region in this example, region 1058, has 7 neighbors
with neighboring node identity numbers 2 6 3 5 1 10 9.

In addition, graph files using the following format may be imported:

• The first line of the graph file specifies the total number of nodes.

• The subsequent lines start with the node name followed by the number of neighbors and the
neighboring node identity numbers.

Example:

309
1001 1 2
1059 3 1 4 5
1002 2 6 5
1051 3 5 2 10
1058 7 3 7 4 6 2 11 10
. . .

Value

Returns an adjacency matrix that represents the neighborhood structure defined in the graph file.
The diagonal elements of this matrix are the number of neighbors of each region. The off-diagonal
elements are either -1 if regions are neighbors else 0.

Author(s)

Thomas Kneib, Felix Heinzl, rewritten by Nikolaus Umlauf.
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References

BayesX Reference Manual, Chapter 5. Available at https://www.uni-goettingen.de/de/bayesx/
550513.html.

See Also

write.gra, read.bnd, write.bnd, get.neighbor, add.neighbor, delete.neighbor.

Examples

file <- file.path(find.package("R2BayesX"), "examples", "Germany.gra")
germany <- read.gra(file)

samples Extract Samples of Coefficients and Variances

Description

Function to extract the samples generated with Markov chain Monte Carlo simulation.

Usage

samples(object, model = NULL, term = NULL, coda = TRUE, acf = FALSE, ...)

Arguments

object an object of class "bayesx".

model for which model the samples should be provided, either an integer or a character,
e.g. model = "mcmc.model".

term character or integer, the term for which samples should be extracted. Also
samples of linear effects may be returned if available and term = "linear-samples",
or of the variance if term = "var-samples". If set to NULL, the samples of the
linear effects will be returned.

acf if set to TRUE, the autocorrelation function of the samples will be provided.

coda if set to TRUE the function will return objects of class "mcmc" or "mcmc.list"
as provided in the coda package.

... further arguments passed to function acf, e.g. argument lag.max if acf = TRUE.

Value

A data.frame or an object of class "mcmc" or "mcmc.list", if argument coda = TRUE.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

https://www.uni-goettingen.de/de/bayesx/550513.html
https://www.uni-goettingen.de/de/bayesx/550513.html
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See Also

bayesx.

Examples

## Not run:
## generate some data
set.seed(111)
n <- 200

## regressor
dat <- data.frame(x = runif(n, -3, 3))

## response
dat$y <- with(dat, 1.5 + sin(x) + rnorm(n, sd = 0.6))

## estimate model
b <- bayesx(y ~ sx(x), data = dat)

## extract samples for the P-spline
sax <- samples(b, term = "sx(x)")
colnames(sax)

## plotting
plot(sax)

## linear effects samples
samples(b, term = "linear-samples")

## for acf, increase lag
sax <- samples(b, term = c("linear-samples", "var-samples", "sx(x)"),

acf = TRUE, lag.max = 200, coda = FALSE)
names(sax)
head(sax)

## plot maximum autocorrelation
## of all parameters
sax <- samples(b, term = c("linear-samples", "var-samples", "sx(x)"),

acf = TRUE, lag.max = 50, coda = FALSE)
names(sax)
matplot(y = apply(sax, 1, max), type = "h",

ylab = "ACF", xlab = "lag")

## example using multiple chains
b <- bayesx(y ~ sx(x), data = dat, chains = 3)
sax <- samples(b, term = "sx(x)")
plot(sax)

## End(Not run)
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shp2bnd convert a shape-file into a boundary object

Description

Converts the geographical information provided in a shape-file into a boundary object (see Chapter
5 of the BayesX Reference Manual)

Usage

shp2bnd(shpname, regionnames, check.is.in = TRUE)

Arguments

shpname base filename of the shape-file (including path)

regionnames either a vector of region names or the name of the variable in the dbf-file repre-
senting these names

check.is.in test whether some regions are surrounded by other regions (FALSE speeds up the
execution time but may result in a corrupted bnd-file)

Value

Returns a boundary object, i.e. a list of polygons that form the map. See read.bnd for more
information on the format.

Author(s)

Felix Heinzl, Daniel Sabanes Bove, Thomas Kneib with contributions by Michael Hoehle and Frank
Sagerer.

References

BayesX Reference Manual. Available at https://www.uni-goettingen.de/de/bayesx/550513.
html.

See Also

write.bnd, read.bnd, plotmap.

Examples

## read shapefile into bnd object
shpname <- file.path(find.package("R2BayesX"), "examples", "Northamerica")
north <- shp2bnd(shpname = shpname, regionnames = "COUNTRY")

## draw the map
plotmap(north)

https://www.uni-goettingen.de/de/bayesx/550513.html
https://www.uni-goettingen.de/de/bayesx/550513.html
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sliceplot Plot Slices of Bivariate Functions

Description

This function plots slices from user defined values of bivariate surfaces.

Usage

sliceplot(x, y = NULL, z = NULL, view = 1, c.select = NULL,
values = NULL, probs = c(0.1, 0.5, 0.9), grid = 100,
legend = TRUE, pos = "topright", digits = 2, data = NULL,
rawdata = FALSE, type = "interp", linear = FALSE,
extrap = FALSE, k = 40, rug = TRUE, rug.col = NULL,
jitter = TRUE, ...)

Arguments

x a matrix or data frame, containing the covariates for which the effect should be
plotted in the first and second column and at least a third column containing
the effect, typically the structure for bivariate functions returned within bayesx
and read.bayesx.output model term objects is used, also see fitted.bayesx.
Another possibility is to specify the plot via a formula, e.g. for simple plotting
of bivariate surfaces z ~ x + y, also see the example.

y if x is a vector the argument y and z must also be supplied as vectors.

z if x is a vector the argument y and z must also be supplied as vectors, z defines
the surface given by z = f(x, y).

view which variable should be used for the x-axis of the plot, the other variable will
be used to compute the slices. May also be a character with the name of the
corresponding variable.

c.select integer, selects the column that is used in the resulting matrix to be used as the
z argument.

values the values of the x or y variable that should be used for computing the slices,
if set to NULL, slices will be constructed according to the quantiles, see also
argument probs.

probs numeric vector of probabilities with values in [0,1] to be used within function
quantile to compute the values for plotting the slices.

grid the grid size of the surface where the slices are generated from.

legend if set to TRUE, a legend with the values that where used for slicing will be added.

pos the position of the legend, see also function legend.

digits the decimal place the legend values should be rounded.

data if x is a formula, a data.frame or list. By default the variables are taken
from environment(x): typically the environment from which plot3d is called.
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rawdata if set to TRUE, the data will not be interpolated, only raw data will be used. This
is useful when displaying data on a regular grid.

type character. Which type of interpolation metjod should be used. The default
is type = "interp", see function interp. The two other options are type =
"mba", which calls function mba.surf of package MBA, or type = "mgcv",
which uses a spatial smoother withing package mgcv for interpolation. The
last option is definitely the slowest, since a full regression model needs to be
estimated.

linear logical. Should linear interpolation be used withing function interp?

extrap logical. Should interpolations be computed outside the observation area (i.e.,
extrapolated)?

k integer. The number of basis functions to be used to compute the interpolated
surface when type = "mgcv".

rug add a rug to the plot.

jitter if set to TRUE a jittered rug plot is added.

rug.col specify the color of the rug representation.

... parameters passed to matplot and legend.

Details

Similar to function plot3d, this function first applies bivariate interpolation on a regular grid,
afterwards the slices are computed from the resulting surface.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

plot.bayesx, bayesx, read.bayesx.output, fitted.bayesx, plot3d.

Examples

## generate some data
set.seed(111)
n <- 500

## regressors
dat <- data.frame(z = runif(n, -3, 3), w = runif(n, 0, 6))

## response
dat$y <- with(dat, 1.5 + cos(z) * sin(w) + rnorm(n, sd = 0.6))

## Not run:
## estimate model
b <- bayesx(y ~ sx(z, w, bs = "te", knots = 5), data = dat, method = "REML")
summary(b)
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## plot estimated effect
plot(b, term = "sx(z,w)", sliceplot = TRUE)
plot(b, term = "sx(z,w)", sliceplot = TRUE, view = 2)
plot(b, term = "sx(z,w)", sliceplot = TRUE, view = "w")
plot(b, term = "sx(z,w)", sliceplot = TRUE, c.select = 4)
plot(b, term = "sx(z,w)", sliceplot = TRUE, c.select = 6)
plot(b, term = "sx(z,w)", sliceplot = TRUE, probs = seq(0, 1, length = 10))

## End(Not run)

## another variation
dat$f1 <- with(dat, sin(z) * cos(w))
sliceplot(cbind(z = dat$z, w = dat$w, f1 = dat$f1))

## same with formula
sliceplot(sin(z) * cos(w) ~ z + w, ylab = "f(z)", data = dat)

## compare with plot3d()
plot3d(sin(z) * 1.5 * w ~ z + w, zlab = "f(z,w)", data = dat)
sliceplot(sin(z) * 1.5 * w ~ z + w, ylab = "f(z)", data = dat)
sliceplot(sin(z) * 1.5 * w ~ z + w, view = 2, ylab = "f(z)", data = dat)

summary.bayesx Bayesx Summary Statistics

Description

Takes an object of class "bayesx" and displays summary statistics.

Usage

## S3 method for class 'bayesx'
summary(object, model = NULL,
digits = max(3, getOption("digits") - 3), ...)

Arguments

object an object of class "bayesx".

model for which model the plot should be provided, either an integer or a character,
e.g. model = "mcmc.model".

digits choose the decimal places of represented numbers in the summary statistics.

... not used.

Details

This function supplies detailed summary statistics of estimated objects with BayesX, i.e. infor-
mations on smoothing parameters or variances are supplied, as well as random effects variances
and parametric coefficients. Depending on the model estimated and the output provided, additional
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model specific information will be printed, e.g. if method = "MCMC" was specified in bayesx, the
number of iterations, the burnin and so forth is shown. Also goodness of fit statistics are pro-
vided if the object contains such informations.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

bayesx, read.bayesx.output.

Examples

## Not run:
## generate some data
set.seed(111)
n <- 500

## regressors
dat <- data.frame(x = runif(n, -3, 3), z = runif(n, -3, 3),

w = runif(n, 0, 6), fac = factor(rep(1:10, n/10)))

## response
dat$y <- with(dat, 1.5 + sin(x) + cos(z) * sin(w) +

c(2.67, 5, 6, 3, 4, 2, 6, 7, 9, 7.5)[fac] + rnorm(n, sd = 0.6))

## estimate model
b <- bayesx(y ~ sx(x) + sx(z, w, bs = "te") + fac,

data = dat, method = "MCMC")

## now show summary statistics
summary(b)

## End(Not run)

sx Construct BayesX Model Terms in A Formula

Description

Function sx is a model term constructor function for terms used within the formula argument of
function bayesx. The function does not evaluate matrices etc., the behavior is similar to function s
from package mgcv. It purely exists to build a basic setup for the model term which can be processed
by function bayesx.construct.

Usage

sx(x, z = NULL, bs = "ps", by = NA, ...)
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Arguments

x the covariate the model term is a function of.

z a second covariate.

bs a character string, specifying the basis/type which is used for this model term.

by a numeric or factor variable of the same dimension as each covariate. In the
numeric vector case the elements multiply the smooth, evaluated at the corre-
sponding covariate values (a ‘varying coefficient model’ results). In the factor
case the term is replicated for each factor level. Note that centering of the term
may be needed, please see the notes.

... special controlling arguments or objects used for the model term, see also the
examples and function bayesx.term.options for all possible optional param-
eters.

Details

The following term types may be specified using argument bs:

• "rw1", "rw2": Zero degree P-splines: Defines a zero degree P-spline with first or second order
difference penalty. A zero degree P-spline typically estimates for every distinct covariate value
in the dataset a separate parameter. Usually there is no reason to prefer zero degree P-splines
over higher order P-splines. An exception are ordinal covariates or continuous covariates with
only a small number of different values. For ordinal covariates higher order P-splines are
not meaningful while zero degree P-splines might be an alternative to modeling nonlinear
relationships via a dummy approach with completely unrestricted regression parameters.

• "season": Seasonal effect of a time scale.

• "ps", "psplinerw1", "psplinerw2": P-spline with first or second order difference penalty.

• "te", "pspline2dimrw1": Defines a two-dimensional P-spline based on the tensor product
of one-dimensional P-splines with a two-dimensional first order random walk penalty for the
parameters of the spline.

• "kr", "kriging": Kriging with stationary Gaussian random fields.

• "gk", "geokriging": Geokriging with stationary Gaussian random fields: Estimation is
based on the centroids of a map object provided in boundary format (see function read.bnd
and shp2bnd) as an additional argument named map within function sx, or supplied within
argument xt when using function s, e.g., xt = list(map = MapBnd).

• "gs", "geospline": Geosplines based on two-dimensional P-splines with a two-dimensional
first order random walk penalty for the parameters of the spline. Estimation is based on the
coordinates of the centroids of the regions of a map object provided in boundary format (see
function read.bnd and shp2bnd) as an additional argument named map (see above).

• "mrf", "spatial": Markov random fields: Defines a Markov random field prior for a spatial
covariate, where geographical information is provided by a map object in boundary or graph
file format (see function read.bnd, read.gra and shp2bnd), as an additional argument named
map (see above).

• "bl", "baseline": Nonlinear baseline effect in hazard regression or multi-state models: De-
fines a P-spline with second order random walk penalty for the parameters of the spline for
the log-baseline effect log(λ(time)).
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• "factor": Special BayesX specifier for factors, especially meaningful if method = "STEP",
since the factor term is then treated as a full term, which is either included or removed from
the model.

• "ridge", "lasso", "nigmix": Shrinkage of fixed effects: defines a shrinkage-prior for the
corresponding parameters γj , j = 1, . . . , q, q ≥ 1 of the linear effects x1, . . . , xq . There are
three priors possible: ridge-, lasso- and Normal Mixture of inverse Gamma prior.

• "re": Gaussian i.i.d. Random effects of a unit or cluster identification covariate.

Value

A list of class "xx.smooth.spec", where "xx" is a basis/type identifying code given by the bs
argument of f.

Note

Some care has to be taken with the identifiability of varying coefficients terms. The standard in
BayesX is to center nonlinear main effects terms around zero whereas varying coefficient terms are
not centered. This makes sense since main effects nonlinear terms are not identifiable and varying
coefficients terms are usually identifiable. However, there are situations where a varying coefficients
term is not identifiable. Then the term must be centered. Since centering is not automatically
accomplished it has to be enforced by the user by adding option center = TRUE in function f. To
give an example, the varying coefficient terms in η = . . .+ g1(z1)z+ g2(z2)z+ γ0 + γ1z+ . . . are
not identified, whereas in η = . . .+ g1(z1)z + γ0 + . . ., the varying coefficient term is identifiable.
In the first case, centering is necessary, in the second case, it is not.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

bayesx, bayesx.term.options, s, bayesx.construct.

Examples

## funktion sx() returns a list
## which is then processed by function
## bayesx.construct to build the
## BayesX model term structure
sx(x)

bayesx.construct(sx(x))
bayesx.construct(sx(x, bs = "rw1"))
bayesx.construct(sx(x, bs = "factor"))
bayesx.construct(sx(x, bs = "offset"))
bayesx.construct(sx(x, z, bs = "te"))

## varying coefficients
bayesx.construct(sx(x1, by = x2))
bayesx.construct(sx(x1, by = x2, center = TRUE))
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## using a map for markov random fields
data("FantasyBnd")
plot(FantasyBnd)
bayesx.construct(sx(id, bs = "mrf", map = FantasyBnd))

## random effects
bayesx.construct(sx(id, bs = "re"))

## examples using optional controlling
## parameters and objects
bayesx.construct(sx(x, bs = "ps", knots = 20))
bayesx.construct(sx(x, bs = "ps", nrknots = 20))
bayesx.construct(sx(x, bs = "ps", knots = 20, nocenter = TRUE))

## use of bs with original
## BayesX syntax
bayesx.construct(sx(x, bs = "psplinerw1"))
bayesx.construct(sx(x, bs = "psplinerw2"))
bayesx.construct(sx(x, z, bs = "pspline2dimrw2"))

bayesx.construct(sx(id, bs = "spatial", map = FantasyBnd))
bayesx.construct(sx(x, z, bs = "kriging"))
bayesx.construct(sx(id, bs = "geospline", map = FantasyBnd, nrknots = 5))
bayesx.construct(sx(x, bs = "catspecific"))

## Not run:
## generate some data
set.seed(111)
n <- 200

## regressor
dat <- data.frame(x = runif(n, -3, 3))

## response
dat$y <- with(dat, 1.5 + sin(x) + rnorm(n, sd = 0.6))

## estimate models with
## bayesx REML and MCMC
b1 <- bayesx(y ~ sx(x), method = "REML", data = dat)

## increase inner knots
## decrease degree of the P-spline
b2 <- bayesx(y ~ sx(x, knots = 30, degree = 2), method = "REML", data = dat)

## compare reported output
summary(c(b1, b2))

## plot the effect for both models
plot(c(b1, b2), residuals = TRUE)
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## more examples
set.seed(111)
n <- 500

## regressors
dat <- data.frame(x = runif(n, -3, 3), z = runif(n, -3, 3),

w = runif(n, 0, 6), fac = factor(rep(1:10, n/10)))

## response
dat$y <- with(dat, 1.5 + sin(x) + cos(z) * sin(w) +

c(2.67, 5, 6, 3, 4, 2, 6, 7, 9, 7.5)[fac] + rnorm(n, sd = 0.6))

## estimate model
b <- bayesx(y ~ sx(x) + sx(z, w, bs = "te") + fac,

data = dat, method = "MCMC")

summary(b)
plot(b)

## now a mrf example
## note: the regional identification
## covariate and the map regionnames
## should be coded as integer
set.seed(333)

## simulate some geographical data
data("MunichBnd")
N <- length(MunichBnd); n <- N*5
names(MunichBnd) <- 1:N

## regressors
dat <- data.frame(x1 = runif(n, -3, 3),

id = as.factor(rep(names(MunichBnd), length.out = n)))
dat$sp <- with(dat, sort(runif(N, -2, 2), decreasing = TRUE)[id])

## response
dat$y <- with(dat, 1.5 + sin(x1) + sp + rnorm(n, sd = 1.2))

## estimate models with
## bayesx MCMC and REML
b <- bayesx(y ~ sx(x1) + sx(id, bs = "mrf", map = MunichBnd),

method = "REML", data = dat)

## summary statistics
summary(b)

## plot the effects
op <- par(no.readonly = TRUE)
par(mfrow = c(1,2))
plot(b, term = "sx(id)", map = MunichBnd,

main = "bayesx() estimate")
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plotmap(MunichBnd, x = dat$sp, id = dat$id,
main = "Truth")

par(op)

## model with random effects
set.seed(333)
N <- 30
n <- N*10

## regressors
dat <- data.frame(id = sort(rep(1:N, n/N)), x1 = runif(n, -3, 3))
dat$re <- with(dat, rnorm(N, sd = 0.6)[id])

## response
dat$y <- with(dat, 1.5 + sin(x1) + re + rnorm(n, sd = 0.6))

## estimate model
b <- bayesx(y ~ sx(x1, bs = "psplinerw1") + sx(id, bs = "re"), data = dat)
summary(b)
plot(b)

## extract estimated random effects
## and compare with true effects
plot(fitted(b, term = "sx(id)")$Mean ~ unique(dat$re))

## End(Not run)

term.freqs Extract model term selection frequencies.

Description

This function takes a fitted bayesx object and returns selection frequency tables of model terms.
These tables are only returned using the stepwise procedure in combination with the bootstrap
confidence intervals, see function bayesx.control.

Usage

term.freqs(object, model = NULL, term = NULL, ...)

Arguments

object an object of class "bayesx".

model for which model the tables should be provided, either an integer or a character,
e.g. model = "mcmc.model".

term character or integer. The term for which the frequency table should be extracted.

... not used.
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Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

See Also

bayesx, bayesx.control.

Examples

## Not run:
## generate some data
set.seed(111)
n <- 500

## regressors
dat <- data.frame(x = runif(n, -3, 3), z = runif(n, -1, 1),

w = runif(n, 0, 1), fac = factor(rep(1:10, n/10)))

## response
dat$y <- with(dat, 1.5 + sin(x) + rnorm(n, sd = 0.6))

## estimate model
b <- bayesx(y ~ sx(x) + sx(z) + sx(w) + sx(fac, bs = "re"),

method = "STEP", CI = "MCMCbootstrap", bootstrapsamples = 99,
data = dat)

summary(b)

## extract frequency tables
term.freqs(b)

## End(Not run)

write.bayesx.input Write the BayesX Program

Description

Function write.bayesx.input takes an object from parse.bayesx.input and translates the input
to an executable program file which may be send to the BayesX binary.

Usage

write.bayesx.input(object)

Arguments

object An object of class "bayesx.input", see parse.bayesx.input
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Details

This function translates the model specified in the formula within parse.bayesx.input or bayesx
into a BayesX executable program file, secondly the function writes a data file into the specified
directory chosen in bayesx.control, parse.bayesx.input or bayesx, where BayesX will find
the necessary variables for estimation.

Value

Function returns a list containing a character string with all commands used within the executable
of BayesX, the program name, model name and the file directory where the program file is stored.

Author(s)

Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.

Examples

## generate some data
set.seed(111)
n <- 500

## regressors
dat <- data.frame(x = runif(n, -3, 3), z = runif(n, -3, 3),

w = runif(n, 0, 6), fac = factor(rep(1:10, n/10)))

## response
dat$y <- with(dat, 1.5 + sin(x) + cos(z) * sin(w) +

c(2.67, 5, 6, 3, 4, 2, 6, 7, 9, 7.5)[fac] + rnorm(n, sd = 0.6))

## create BayesX .prg
pars <- parse.bayesx.input(y ~ sx(x) + sx(z, w, bs = "te") + fac,

data = dat)
prg <- write.bayesx.input(pars)
print(prg)

## have a look at the generated files
## which are used within BayesX
print(list.files(paste(tempdir(), "/bayesx", sep = "")))

write.bnd Saving Maps in Boundary Format

Description

Writes the information of a map object to a file (in boundary format)

Usage

write.bnd(map, file, replace = FALSE)
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Arguments

map pap object ot be saved (should be in boundary format).

file name of the file to write to

replace should an existing file be overwritten with the new version?

Author(s)

Thomas Kneib, Felix Heinzl.

References

BayesX Reference Manual. Available at https://www.uni-goettingen.de/de/bayesx/550513.
html.

See Also

read.bnd, write.gra, read.gra.

Examples

data("FantasyBnd")
tfile <- tempfile()
write.bnd(FantasyBnd, file = tfile)
cat(readLines(tfile), sep = "\n")
unlink(tfile)

write.gra Saving Maps in Graph Format

Description

Writes the information of a map object to a file (in graph format).

Usage

write.gra(map, file, replace = FALSE)

Arguments

map map object ot be saved (should be in graph format, see bnd2gra for the conver-
sion of boundary format to graph format).

file name of the file to write to

replace should an existing file be overwritten with the new version?

Author(s)

Thomas Kneib, Felix Heinzl.

https://www.uni-goettingen.de/de/bayesx/550513.html
https://www.uni-goettingen.de/de/bayesx/550513.html
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References

BayesX Reference Manual. Available at https://www.uni-goettingen.de/de/bayesx/550513.
html.

See Also

read.gra, read.bnd, write.bnd.

Examples

data("FantasyBnd")
tfile <- tempfile()
write.gra(bnd2gra(FantasyBnd), file = tfile)
cat(readLines(tfile), sep = "\n")
unlink(tfile)

ZambiaBnd Zambia Map

Description

This database produces a map of Zambia containing 57 districts.

Usage

data("ZambiaBnd")

Format

A list of class "bnd" containing 57 polygon matrices with x-coordinates in the first and y-
coordinates in the second column each.

Source

https://www.uni-goettingen.de/de/bayesx/550513.html.

See Also

plotmap, read.bnd, write.bnd

Examples

## load ZambiaBnd and plot it
data("ZambiaBnd")
plotmap(ZambiaBnd)

https://www.uni-goettingen.de/de/bayesx/550513.html
https://www.uni-goettingen.de/de/bayesx/550513.html
https://www.uni-goettingen.de/de/bayesx/550513.html
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ZambiaNutrition Determinants of Childhood Malnutrition in Zambia

Description

The Demographic Health Surveys (DHS) of Zambia was conducted 1992. The survey is produced
jointly by Macro International, a USAIDfunded firm specializing in demographic research, and the
national statistical agency of the country.

Malnutrition among children is usually determined by assessing an anthropometric status of the
children relative to a reference standard. In our example, malnutrition is measured by stunting or
insufficient height for age, indicating chronic malnutrition. Stunting for a child i is determined
using a Z-score defined as

stuntingi =
AIi −MAI

σ

where AI refers to the child’s anthropometric indicator (height at a certain age in our example),
while MAI and σ correspond to the median and the standard deviation in the reference population,
respectively.

The main interest is on modeling the dependence of malnutrition on covariates including the age of
the child, the body mass index of the child’s mother, the district the child lives in and some further
categorial covariates.

Usage

data("ZambiaNutrition")

Format

A data frame containing 4847 observations on 8 variables.

stunting: standardised Z-score for stunting.

mbmi: body mass index of the mother.

agechild: age of the child in months.

district: district where the mother lives.

memployment: mother’s employment status with categories ‘working’ and ‘not working’.

meducation: mother’s educational status with categories for complete primary but incomplete sec-
ondary ‘no/incomplete’, complete secondary or higher ‘minimum primary’ and no education
or incomplete primary ‘minimum secondary’.

urban: locality of the domicile with categories ‘yes’ and ‘no’.

gender: gender of the child with categories ‘male’ and ‘female’.

Source

https://www.uni-goettingen.de/de/bayesx/550513.html.

https://www.uni-goettingen.de/de/bayesx/550513.html
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References

Kandala, N. B., Lang, S., Klasen, S., Fahrmeir, L. (2001): Semiparametric Analysis of the Socio-
Demographic and Spatial Determinants of Undernutrition in Two African Countries. Research in
Official Statistics, 1, 81–100.

See Also

bayesx

Examples

## Not run:
## load zambia data and map
data("ZambiaNutrition")
data("ZambiaBnd")

## estimate model
zm <- bayesx(stunting ~ memployment + meducation + urban + gender +

sx(mbmi) + sx(agechild) + sx(district, bs = "mrf", map = ZambiaBnd) +
sx(district, bs = "re"), iter = 12000, burnin = 2000, step = 10,
data = ZambiaNutrition)

summary(zm)

## plot smooth effects
plot(zm, term = c("sx(bmi)", "sx(agechild)", "sx(district)"), map = ZambiaBnd)

## for more examples
demo("zambia")

## End(Not run)
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