PoissonMultinomial: The Poisson-Multinomial Distribution

Implementation of the exact, normal approximation, and simulation-based methods for computing the probability mass function (pmf) and cumulative distribution function (cdf) of the Poisson-Multinomial distribution, together with a random number generator for the distribution. The exact method is based on multi-dimensional fast Fourier transformation (FFT) of the characteristic function of the Poisson-Multinomial distribution. The normal approximation method uses a multivariate normal distribution to approximate the pmf of the distribution based on central limit theorem. The simulation method is based on the law of large numbers. Details about the methods are available in Lin, Wang, and Hong (2022) <doi:10.1007/s00180-022-01299-0>.

Version: 1.1
Imports: mvtnorm, Rcpp
LinkingTo: Rcpp, RcppArmadillo
Published: 2023-12-07
DOI: 10.32614/CRAN.package.PoissonMultinomial
Author: Yili Hong [aut, cre], Zhengzhi Lin [aut, ctb], Yueyao Wang [aut, ctb], Florian Junge [aut, ctb]
Maintainer: Yili Hong <yilihong at vt.edu>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
SystemRequirements: fftw3(>=3.3)
CRAN checks: PoissonMultinomial results


Reference manual: PoissonMultinomial.pdf


Package source: PoissonMultinomial_1.1.tar.gz
Windows binaries: r-devel: PoissonMultinomial_1.1.zip, r-release: PoissonMultinomial_1.1.zip, r-oldrel: PoissonMultinomial_1.1.zip
macOS binaries: r-release (arm64): PoissonMultinomial_1.1.tgz, r-oldrel (arm64): PoissonMultinomial_1.1.tgz, r-release (x86_64): PoissonMultinomial_1.1.tgz, r-oldrel (x86_64): PoissonMultinomial_1.1.tgz
Old sources: PoissonMultinomial archive


Please use the canonical form https://CRAN.R-project.org/package=PoissonMultinomial to link to this page.