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Abstract

Post-treatment confounded variables are common in causal inference. Such variables
occur after the treatment assignment but before the outcome. Special cases include
noncompliance in randomized experiments, truncation by death, recruitment bias, etc.
Principal stratification (Frangakis and Rubin 2002) is a general framework for handling
post-treatment confounding in causal inference. However, principal stratification is not
accessible to most applied researchers because its implementation requires complex in-
ference tools and highly customized programming. We develop the R package PStrata

to automatize statistical analysis of principal stratification for a wide range of common
scenarios, including one or multiple, binary or categorical post-treatment variables, con-
tinuous, discrete or time-to-event outcomes with both unstructured and clustered data.
PStrata adopts the Bayesian mixture modeling approach for estimation and inference.
It implements an innovative computing architecture that combines R and Stan, a proba-
bilistic programming language for Bayesian analysis. First, R provides the user-interface
where the user specifies the setting and assumptions. Then, R generates corresponding
Stan code and feed it into Stan to automatize posterior inference of the model parameters.
Finally, R takes the posterior simulations output from Stan to calculate point and interval
estimates of the causal estimands. We demonstrate PStrata via a real application and
simulations.

Keywords: Causal inference, Instrumental variable, Intercurrent events, Post-treatment vari-
ables, Principal stratification, Noncompliance, Stan.

1. Introduction

Post-treatment confounded variables are common in causal inference. Such variables occur
after the treatment assignment but before the outcome, and thus are often referred to as inter-
mediate variables. They cannot be adjusted in the same fashion as pre-treatment variables in
causal inference (Rosenbaum 1984). A prominent example is noncompliance to the assigned
treatment in randomized trials, which includes treatment switching and discontinuation. An-
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other example is outcome truncated by a terminal or competing event like death. These cases
are known as intercurrent events in clinical trials and pose challenges for evaluating the treat-
ment effects. Principal stratification (Frangakis and Rubin 2002) is a general framework for
handling post-treatment confounding in causal inference. It originates from the instrumental
variable approach to noncompliance (Angrist, Imbens, and Rubin 1996) and has been ex-
panded to a wide range of settings, e.g. truncation by death (e.g. Rubin 2006; Zhang, Rubin,
and Mealli 2009), surrogate endpoints (e.g. Gilbert and Hudgens 2008), recruitment bias in
cluster randomized trials (Papadogeorgou, Liu, Li, and Li 2023). Principal stratification has
received an intense interest since the influential ICH E9 Addendum on statistical principles
for clinical trials (ICH E9 (R1) 2020) listed it as a valid approach to intercurrent events.
However, implementing principal stratification requires complex modeling and inference tools
and highly customized programming. Therefore, despite the sizeable statistical literature,
principal stratification has not been accessible to most applied researchers. And there is a
lack of software and corresponding tutorials. Even public available computer code is sparse.

To fill this gap, we develop the R package PStrata to automatize statistical analysis of principal
stratification. PStrata focuses on the general setting where the data on all principal strata are
potentially observable, i.e. there is no stratum with structural missing data. PStrata adopts
the Bayesian mixture modeling approach for estimation and statistical inference. Further-
more, PStrata implements an innovative computing architecture that combines R and Stan, a
probabilistic programming language for Bayesian analysis. First, R provides the user-interface
where the user specifies the setting and assumptions. Then, R generates corresponding Stan

code and feeds it into Stan to automatize posterior inference of the model parameters. Finally,
R takes the posterior simulations output from Stan to calculate point and interval estimates
of the causal estimands. PStrata accommodates one or multiple, binary or categorical in-
termediate variables, continuous, discrete or time-to-event outcomes with both unstructured
and clustered data.

This article introduces and illustrates the PStrata package. Section 2 reviews the principal
stratification framework and the scope of PStrata. Section 3 describes the main functions in
PStrata. Section 4 illustrates these main functions with a case study. Section 5 showcases
the use of PStrata on several complex scenarios by simulations. PStrata is publicly available
on CRAN.

2. Overview of principal stratification

2.1. Setup and estimands

We start with the simplest case of a binary treatment and a binary intermediate variable.
Assume we have an iid sample from a population, with N units. For unit i (i = 1, . . . , N),
let Zi be the treatment assigned to (1 for treatment and 0 for control), Yi be the outcome,
and Di be a binary intermediate variable that occurs after Zi and before Yi. We also observe
a set of pre-treatment variables Xi. We assume SUTVA (Rubin 1984) throughout the paper.
Because Di occurs post treatment, it has two potential values, Di(z) (z = 0, 1), of which only
the one corresponding to the treatment is observed: Di = Di(Zi). The outcome Yi also has
two potential values, Yi(z, Di(z)), of which only the one corresponding to the treatment is
observed: Yi = Yi(Zi, Di(Zi)). In the literature, the potential outcome Yi(z, Di(z)) is often



Journal of Statistical Software 3

shorthanded to Yi(z), a convention we follow throughout the paper.

A principal stratification is the classification of units according to their joint potential values
of the intermediate variable, Si = (Di(0), Di(1)), which is called a principal stratum. With
a binary Z and D, there are four strata: Si ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. Principal strata Si

possess a key property: they remain unaffected by the treatment assignment, and thus can
be viewed as a pre-treatment variable. Therefore, comparisons of Yi(1) and Yi(0) within a
principal stratum s are causal effects, known as principal causal effects (PCEs):

τs = E{Yi(1) − Yi(0) | Si = s} = E{Yi(1) | Si = s} − E{Yi(0) | Si = s},

for all s. The standard average treatment effect (ATE) is a weighted sum of the PCEs,

τ ATE = E{Yi(1) − Yi(0)} =
∑

s

πsτs,

where πs = Pr(Si = s) is the proportion of the stratum s. Principal stratification offers a
refined picture of treatment effect heterogeneity between different subpopulations. Specific
case-dependent PCEs are often of the primary interest in the analysis.

We now give two examples of the above general framework. The first example is noncom-
pliance. Here Z is the (randomly) assigned treatment, D is the actual treatment, Y is an
outcome. Noncompliance arises when Di 6= Zi for some units. The four strata have specific
terms (Angrist et al. 1996): Si = (0, 0) never-takers, namely, units who would take control
regardless of the initial assignment; Si = (0, 1) compliers, namely, units who would take treat-
ment if assigned to treatment and would take control if assigned to control; Si = (1, 0) defiers,
namely, units whose actual treatment status is the opposite to the assignment; Si = (1, 1)
always-takers, namely, units who would take treatment regardless of the initial assignment.
The ATE is the standard intention-to-treat (ITT) effect, which measures the causal effect of
the assignment, i.e. effectiveness. In contrast, under suitable assumptions, the causal effect
of the compliers can be interpreted as the effect of the actual treatment, i.e. efficacy (Hirano,
Imbens, Rubin, and Zhou 2000). This setting is applicable to a variety of situations, differing
in the substantive contexts, e.g. randomized encouragement experiment. For simplicity, we
will generically refer to this setting as “noncompliance” and use the associated nomenclature
in this paper.

The second example is “truncation by death;” below we introduce it in its original context
(Rubin 2006). Here Z is a treatment, D is the survival status of a patient sometime after the
treatment, Y is the quality of life at the end of the study. Obviously, quality of life is not
defined for deceased patients, in other words, the outcome is truncated (or censored) by death.
This is different from the standard administrative censoring or truncation in survival analysis.
We can define four principal strata based on a patient’s joint potential survival status under
treatment and control: Si = (0, 0) patients who would die regardless of the initial assignment;
Si = (0, 1) patients who would die under control but survive under treatment; Si = (1, 0)
patients who would survive under control but die under treatment; Si = (1, 1) patients who
would survive regardless of the initial assignment, namely, always-survivors. Because the
always-survivor is the only stratum where the outcome is well defined under both treatment
and control, it is the only stratum where a causal comparison is meaningful. Therefore, the
causal effect specific to this stratum, namely, the survivor average causal effect, is a primary
causal estimand. Truncation-by-death is applicable to many different contexts where the
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Table 1: Composition of principal strata in observed cells of assigned and actual treatment
(Z, D)

D = 0 D = 1

Z = 0 never-takers, compliers always-takers, defiers

Z = 1 never-takers, defiers always-takers, compliers

intermediate variable is not death but rather a competing or semi-competing event of the
outcome (e.g. Zhang et al. 2009).

In terms of data structure, the main difference between the noncompliance and truncation-
by-death settings is that conceptually outcomes are observed in all units in the former but
are only observed on a subset of units in the latter. Therefore, causal inference in these two
settings require entirely different assumptions and inferential procedures. The current version
of PStrata focuses on the noncompliance setting.

2.2. Model-based estimation

The central challenge in statistical analysis within principal stratification is that, due to the
fundamental problem of causal inference, individual principal stratum membership Si is not
observed. In fact, without any assumptions, each observed cell of (Z, D) is composed of a
mixture of two strata, as listed in Table 1. Therefore, additional assumptions are required
to identify and estimate the PCEs and the main task in analysis is to disentangle the latent
mixtures from the observed data.

The first standard assumption is that the treatment assignment is unconfounded conditional
on pre-treatment variables.

Assumption 1. (Unconfounded assignment). {Yi(0), Yi(1), Di(0), Di(1)} ⊥⊥ Zi | Xi.

With additional assumptions, the PCEs of some strata can be nonparametrically identified
(Angrist et al. 1996) (see discussion of Assumption 2-3 later). However, such assumptions
are not always plausible. Model-based approach is more flexible, efficient, and can incor-
porate covariates. In particular, a latent mixture model is natural given the data structure
in principal stratification (Imbens and Rubin 1997). This is the approach PStrata adopts.
Below we will briefly outline the model-based estimation strategy; for more details, see Li,
Ding, and Mealli (2023) Section 7.2. Under Assumption 1, one needs to specify two models
with unknown global parameter θ: (i) S-model, i.e., a principal strata model given covari-
ates: Pr(Si | Xi, θs); (ii) Y-model, i.e., an outcome model given the stratum, covariates and
treatment: Pr(Yi | Si, Xi, Zi, θy). With these models, the full likelihood is as follows

l(θ) ∝
n∏

i=1

∑

s∈S:Di=D(s,Zi)

Pr(Si = s | Xi, θ) Pr(Yi | Si = s, Zi, Xi, θ), (2.1)

where S is the set of all possible principal strata and D(s, z) denotes actual treatment Di

induced by principal stratum Si = s and assigned treatment Zi = z. The likelihood function
(2.1) resembles that of a mixture model with a latent Si. Estimation of θ can be conducted
through either the frequentist’s approach such as the EM algorithm or the Bayesian approach.
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PStrata adopts the Bayesian approach because it allows (i) automatic inference for not only
the model parameters but also all derived quantities of the parameter such as τs, and (ii)
straightforward extension to more complicated settings, as will be illustrated.

Apart from the S-model and Y-model, the Bayesian approach requires to specify the prior
distribution of θ, π(θ), which, in conjunction with the observed data, leads to the posterior
distribution of θ, Pr(θ | Z, D, Y, X) ∝ π(θ)l(θ). Conventionally, as in Imbens and Rubin
(1997) and Hirano et al. (2000), the posterior distribution is simulated by a Gibbs sampler
(Geman and Geman 1984), which alternatively draws from the posterior (predictive) dis-
tribution of the missing strata Si and the parameter θ. This procedure requires non-trivial
and case-specific derivation of conditional distributions and thus is challenging to generalized.
To circumvent this challenge, the PStrata package utilizes the Stan programming language
(Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li, and Riddell
2017; Stan Development Team 2022) to enable automated sampling through the Hamiltonian
Monte Carlo (HMC) method (Neal 2011).

Note that the PCEs can be written as

τs = E{E{Yi | Zi = 1, Si = s, Xi} | Si = s} − E[E{Yi | Zi = 0, Si = s, Xi} | Si = s]. (2.2)

Let gz,s(x; θ) = E(Yi | Zi = z, Si = s, Xi = x, θ) and ps(x; θ) = Pr(Si = s | Xi = x, θ), both of
which can be directly obtained from the S-model and Y-model. Upon obtaining the posterior
samples of the parameter θ, the PCE can be computed as

τ̂s(θ) =

∑n
i=1 g1,s(Xi; θ)ps(Xi; θ)∑n

i=1 ps(Xi; θ)
−

∑n
i=1 g0,s(Xi; θ)ps(Xi; θ)∑n

i=1 ps(Xi; θ)
. (2.3)

Let θ1, . . . , θK be samples from the posterior distribution of θ. We can plug them into (2.3)
to obtain τ̂s(θ1), . . . , τ̂s(θK), which approximates the posterior distribution of τs, from which
we can calculate the point estimate and credible intervals.

PStrata assumes a multinomial logistic model for Si and a generalized linear model for Yi.
Specifically, the S-model is given by

log

{
Pr(Si = s | Xi)

Pr(Si = s0 | Xi)

}
= ηs + X ′

iξs, (2.4)

where s0 is an arbitrary reference stratum. The Y-model is given by a generalized linear
model where the outcome Yi is assumed to be generated from a distribution in the exponential
dispersion family, with the mean function given by

E{Yi | Si = s, Zi = z, Xi} = g−1(αs,z + X ′
iβs,z) (2.5)

with some link function g. The distributional form of Yi and the choice of the link function is
specified according to the type of outcome variable. In summary, the parameters include the
intercepts {ηs : s ∈ S \ {s0}}, {αs,z : s ∈ S, z ∈ {0, 1}}, the coefficients {ξs : s ∈ S \ {s0}},
{βs,z : s ∈ S, z ∈ {0, 1}} and possibly additional distribution-specific parameters such as
{σ2

s,z : s ∈ S, z ∈ {0, 1}}.

Role of assumptions in model-based inference

Inference of the PCEs can be sharpened by (i) additional assumptions that reduce the number
of unknown parameters (Imbens and Rubin 1997), and (ii) covariates Xi that are predictive
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of the principal strata Si or/and the outcome Yi (Mealli and Pacini 2013; Long and Hudgens
2013). Two common assumptions are monotonicity and exclusion restriction.

Assumption 2. (Monotonicity): D(1) ≥ D(0).

Assumption 3. (Exclusion restriction): for stratum s in which D(0) = D(1), i.e., s = (0, 0)
or (1, 1), Yi(1) = Yi(0).

In the context of noncompliance, monotonicity rules out defiers: Pr(Si = d) = 0. Exclusion
restriction rules out any direct effect from the assigned treatment to the outcome not mediated
through the actual treatment among never-takers and always-takers, so that τ(0,0) = τ(1,1) =
0. Under Assumptions 1-3, Angrist et al. (1996) showed that the PCE of the compliers is
nonparametrically identifiable and is equivalent to the two-stage least square estimand as in
the instrumental variable method.

More generally, monotonicity specifies restrictions on Di(0) and Di(1); various versions of
monotonicity reduce the number of possible strata S and thus the number of parameters
to be estimated in (2.1). Exclusion restriction specifies the relation between the outcome
distributions for different strata. A generalized version of Assumption 3 is that for stratum
s with Di(0) = Di(1), then Pr{Yi(0)|Xi, s} = Pr{Yi(1)|Xi, s}. This forces the corresponding
parameters in different mixture components in the Y-model to be the same and thus also
reduce the number of free parameters.

PStrata supports user-specification of monotonicity and exclusion restriction. Despite the
potential variations in the number of strata and parameters resulting from these assumptions,
the posterior distribution of the parameters can be derived in a similar, straightforward
manner, and the sampling and inference process remains nearly identical using the HMC
sampling method.

2.3. Time-to-event outcome

Survival or more generally time-to-event outcomes are prevalent in real world applications.
PStrata implements the Bayesian mixture model based method for survival analysis developed
in Liu, Wruck, and Li (2023). Below we briefly describe the estimands, assumptions and
models; more details can be found in Liu et al. (2023). Assume the primary outcome of
interest is the time Ti to the first occurrence of an event, which is subject to right censoring
at time Ci. Due to the censoring, Ti and Ci are not observed; instead, we observe the
censored event time Yi = min{Ti, Ci} and the event indicator δi = 1(Ti < Ci). Denote by
Ti(z) the potential survival time under treatment z(= 0, 1). A common causal estimand with
time-to-event outcome is the principal survival probability causal effect (SPCE)

τSP CE
s (t) = Pr(Ti(1) > t | Si = s) − Pr(Ti(0) > t | Si = s). (2.6)

A second estimand is the restricted average causal effect (RACE) in survival time,

τRACE(t) = E[Ti(1) ∧ t] − E[Ti(0) ∧ t], 0 ≤ t ≤ tmax, (2.7)

where a ∧ b ≡ min(a, b).

To identify the SPCE and RACE, we need to make an additional assumption on the censoring
process.
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Assumption 4. (Independent censoring): Ti ⊥⊥ Ci | {Xi, Si, Zi}.

Under Assumptions 1 and 4, we only need to specify a Y-model Pr(Ti | Si, Zi, Xi) to esti-
mate the SPCE. PStrata implements the Weibull-Cox proportional hazard model (Cox 1972;
Abrams, Ashby, and Errington 1996)

h(t; Si = s, Zi = z, Xi) = texp(θs,z)−1 exp(αs,z + X ′
iβs,z). (2.8)

and the accelerated failure time (AFT) model (Wei 1992)

log(Ti) = αs,z + X ′
iβs,z + εi, (2.9)

where εi follows a normal distribution N(0, σ2
s,z).

Liu et al. (2023) show that under parameter θ, the stratum SPCE can be estimated by

τ̂SP CE
s (t; θ) =

∑n
i=1 G1,s(t, Xi; θ)ps(Xi; θ)∑n

i=1 ps(Xi; θ)
−

∑n
i=1 G0,s(t, Xi; θ)ps(Xi; θ)∑n

i=1 ps(Xi; θ)
, (2.10)

where ps(Xi; θ) = Pr(Si = s | Xi; θ), which is assumed to follow the multinomial logistic S-
model 2.4, and Gz,s(t, Xi; θ) = Pr(Ti > t | Si = s, Zi = z, Xi; θ), the analytical form of which
can be derived for both the Cox and AFT models. Similarly, the RACE can be estimated as

τ̂RACE
s (t; θ) =

∑n
i=1 H1,s(t, Xi; θ)ps(Xi; θ)∑n

i=1 ps(Xi; θ)
−

∑n
i=1 H0,s(t, Xi; θ)ps(Xi; θ)∑n

i=1 ps(Xi; θ)
, (2.11)

where Hz,s(t, Xi; θ) = E[Ti ∧ t | Si = s, Zi = z, Xi; θ].

2.4. Extensions

PStrata can accommodate several additional settings, encompassing non-binary treatment,
non-binary and multiple intermediate variables. Below we briefly introduce these settings,
which, despite their increased complexity, retain similarities in terms of inference with the
binary setting.

Non-binary treatment

The treatment Zi can take multiple values, which we denote by Z. In the binary setting,
Z = {0, 1}. In general, we denote Z = {0, 1, . . . , Zmax − 1}. The principal strata will be
similarly defined by the potential values of Di, Si = (Di(0), . . . , Di(Zmax − 1)).

Non-binary intermediate variable

The intermediate variable Di can take multiple values from a set D = {0, 1, . . . , Dmax−1}. One
example is the non-compliance case where units can either switch treatment or discontinue
from any treatment altogether. In this context, we can define the actual treatment as having
three distinct levels: two for both treatment arms and an additional level to account for
discontinuation (Liu et al. 2023). Without any restriction, there are D2

max potential strata
under binary treatment.

Multiple intermediate variables

There can be multiple intermediate variables. For example, in Frumento, Mealli, Pacini, and
Rubin (2013), there is both noncompliance and truncation-by-death. To simplify the analysis,
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these events can be collectively considered as a single intermediate variable, which allows us
to define the principal strata effectively. For instance, if there are two intermediate variables
denoted as D1i and D2i, we can define a composite intermediate variable Di = (D1i, D2i).
Consequently, the principal strata can be defined as Si = (D1i(0), D2i(0), D1i(1), D2i(1)).

In the above three settings, without any restriction, the number of potential principal strata
increases exponentially. Usually various versions of monotonicity tailored to specific applica-
tions are imposed to reduce the number of principal strata.

Multilevel data

Multilevel data arise when the units are not independent samples from the population but
instead belong to natural clusters, such as schools, hospitals, or regions. For instance, in a
clinical trial conducted across multiple medical centers, patients from the same medical center
may exhibit correlated outcomes.

In this context, we assume the presence of J pre-defined clusters, denoted by j = 1, . . . , J ,
each associated with specific cluster-level covariates represented as Vj . Every subject, indexed
as i = 1, . . . , n, is pre-assigned to a fixed and known cluster, denoted as Ci. Let Xi represent
the individual-level covariates for subject i, and we define Wi as the concatenated vector
Wi = (Xi, VCi

), which combines the individual and cluster-level covariates of subject i. To
account for the dependence in outcomes within clusters, we include in both S-model and
Y-model normally distributed cluster-specific random intercepts. The likelihood function,
though complex in form, can be calculated with these model specification and the posterior
samples can be drawn by PStrata using the Stan language.

PStrata accommodates nearly all scenarios of multilevel settings that can be formulated
using the R package lme4. For more comprehensive information, refer to Bates, Mächler,
Bolker, and Walker (2015). Across all the aforementioned settings, the fundamental inference
framework remains consistent. The primary distinction arises from variations in the number
of parameters, resulting from the different levels of Si and Zi. Notably, PStrata simplifies
the process by enabling automatic Bayesian inference of the causal effect in all these settings.
This package allows users to concentrate on selecting the principal stratification settings that
align with their data while delegate the technical details to the back-end.

3. Overview of the package

As discussed in Section 2, the Bayesian inference consists of three main steps. First, specify
the models and prior distribution of the model parameters, and derive the likelihood of the
data. Second, draw samples from the posterior distribution of these parameters. Third,
calculate estimands with these posterior samples. PStrata closely adheres to these steps, as
depicted in Figure 1. First, the user specifies the data generating models, namely the S-model
and Y-model, along with the prior distribution of the model parameters. Additionally, the
user sets assumptions that are appropriate for the analysis. Next, PStrata utilizes the Stan

programming language to perform the crucial step of drawing samples from the posterior
distribution. To accomplish this, PStrata automatically generates the corresponding Stan

code and data based on the user’s input. This code and data are subsequently processed by
Stan, which generates the samples from the posterior distribution. Finally, these samples are
returned to PStrata, where they are used to estimate causal estimands and their associated
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uncertainties. PStrata also provides summary and visualization of the results.

The user passes model specification and data to
PStrata

PStrata calls make_stancode and make_standata to
generate Stan code and data

The Stan code, data and other specification
parameters are passed to rstan

rstan translates the Stan code into C++, then
compiles and fits the model with data

The fitted Bayesian model is returned to PStrata

and post-processed for summary and visualization

Figure 1: Overview of the model fitting process in PStrata

The central function of PStrata, named PStrata, is an integrated module that bridges between
the front-end and back-end components. On the front-end, users input model specifications
and data, and in return, receive causal estimates as output. Unlike the Gibbs sampler, the
sampling process on the back-end is decoupled from the front-end, alleviating users from
the complexities associated with sampling. The core submodules within PStrata, namely
PSObject, PSSample, PSOutcome, and PSContrast, collectively fulfill this requirement. The
PSObject submodule interprets the user input to generate a principal stratification object
containing crucial information about model specifications, providing sufficient details to de-
termine the posterior distribution of parameters. Subsequently, the PSSample submodule
calls Stan to generate samples from the posterior distribution. These posterior samples are
then returned to PStrata and further processed by PSOutcome and PSContrast to calculate
potential outcomes and causal effects. The relationships between these modules are depicted
in Figure 2.

The procedure is divided into two phases: the design phase and the analysis phase, based on
whether they occur before or after invoking Stan to generate posterior samples.

3.1. Design phase

The core function for the design phase is the PSObject function where users specify the
S-model and Y-model, define assumptions regarding monotonicity and exclusion restriction
(ER), and set prior distributions for parameters within these models. The function is declared
as follows:

PSObject(S.formula, Y.formula, Y.family, data, strata, ER,
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PSObject

PSSample

PStrata PSOutcome PSContrast

Figure 2: Core modules designed in PStrata. Solid arrows indicate that the start-point
module is called by the end-point module. Dotted arrows indicate that the outcome of the
start-point module is passed to the end-point module as an argument.

prior_intercept, prior_coefficient, prior_sigma,

prior_alpha, prior_lambda, prior_theta, survival.time.points)

Below we will provide more details of each of these arguments.

S-model and Y-model

Central to our model specification are the S-model (2.4) and the Y-model (2.5). The user needs
to select the linear predictors Xi and choose the appropriate distribution for the generalized
linear model.

In PStrata, we define the linear predictors in the S-model and Y-model with a formula object
in R, which aligns with the established convention in the lm() and glm() functions. Specif-
ically, the argument S.formula has the syntax like Z + D ~ X1 + X2. The left hand side
consists of two variables Z and D concatenated by the plus (+) sign, representing the treat-
ment and intermediate variable, respectively. The argument Y.formula follows the similar
syntax, such as Y ~ X1 + X2, where the variable Y on the left hand side denotes the outcome
variable. In both S.formula and Y.formula, the right hand side consists of the linear predic-
tors. Each predictor can be a raw covariate (e.g. X1), a transformed covariate (e.g. log(X1))
or the interaction between multiple covariates (e.g. X1:X2).

The generalized linear model for the outcome is specified by the Y.family argument, which
represents both the choice of probability distribution family and the associated link function,
following the convention of glm(). PStrata supports nearly every family and link function in
the glm() function. Table 2 provides a comprehensive list.

Assumptions

Recall that the principal stratum Si = (Di(0), Di(1)). In PStrata, each stratum is denoted by
a character object accordingly, with the following representations: “11” for always-takers,
“00” for never-takers, “01” for compliers, and “10” for defiers.

The monotonicity assumption determines the set of all possible strata. This can be specified by
listing all strata in the strata argument. For example in the context of binary noncompliance,
we may specify strata = c(“00", “01", “10", “11") if we do not assume monotonicity.
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Family Link Functions Density Function

gaussian identity, log, inverse 1√
2πσ2

exp
(
−−(y−µ)2

2σ2

)

binomial logit, probit, cauchit, log, cloglog µy(1 − µ)1−y

Gamma identity, log, inverse
(α/µ)α

Γ(α) yα−1 exp(−αy
µ )

poisson identity, log, sqrt µye−µ/(y!)

inverse.gaussian 1/muˆ2, inverse, identity, log
√

λ
2πy3 exp

(
−λ(y−µ)2

2yµ2

)

Table 2: Supported families, link functions and corresponding density/mass functions ex-
pressed by the mean µ and additional parameters in PStrata.

With monotonicity in a two-sided noncompliance setting, we may specify strata = c(“00",

“01", “11"). Similarly, with monotonicity in a one-sided noncompliance setting, we may
specify strata = c(“00", “01"), or optionally for better clarify with labels strata = c(nt

= “00", co = “01"), where nt and co stand for never-takers and compliers, respectively.

In PStrata, the exclusion restriction assumption is encapsulated by the ER argument, which
accepts a boolean vector of the same length as strata. This vector indicates whether the
exclusion restriction is assumed for each principal stratum. For simplicity, the monotonicity
and exclusion restriction assumptions can be jointly specified by appending an asterisk after
each stratum where the exclusion restriction is assumed. For instance, strata = c(nt =

“00*", co = “01", at = “11*") denotes the combination of monotonicity with the exclu-
sion restriction assumption for both always-takers and never-takers.

Priors

The S-model (2.4) and the Y-model (2.5) introduce a range of parameters, including inter-
cepts (η and αs,z), coefficients (ξs and βs,z), and additional parameters tailored to specific
distribution families, such as the variance parameter σ2

s,z when the outcome follows a Gaussian
distribution. Depending on the type of the parameter, the prior distribution can be desig-
nated through prior_intercept, prior_coefficient, and, when applicable, prior_sigma,
prior_alpha, or prior_lambda for Gaussian, Gamma, and inverse Gaussian families, respec-
tively. While many of these parameters take values over the entire real line, some, like σ2

s,z,
are constrained to positive values. PStrata offers flexibility in specifying prior distributions
for these parameters. Table 3 provides a comprehensive list of supported prior distributions
classified by the support.

By default, the prior distribution for the intercept is the flat (improper) distribution over the
entire real line, and the prior distribution of the coefficients is the standard Gaussian distri-
bution. The default prior distribution for other parameters is the inverse-gamma distribution
IG(1, 1).

Time-to-event outcome

PStrata provides full support for inference involving right-censored outcomes, with slightly
adjusted syntax. Specifically, the Y-model now incorporates an additional variable: the
event indicator, denoting whether the event occurred before censoring. Consequently, the
Y.formula requires an adaptation to Y + delta ~ X1 + X2, where both the censored event
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Support Prior distribution Specification

(−∞, ∞)

Uniform (improper) prior_flat()

Normal prior_normal(mean = 0, sigma = 1)

Student t prior_t(mean = 0, sigma = 1, df = 1)

Cauchy prior_cauchy(mean = 0, sigma = 1)

Double exponential prior_lasso(mean = 0, sigma = 1)

Logistic prior_logistic(mean = 0, sigma = 1)

(0, ∞)

Chi squared prior_chisq(df = 1)

Inverse Chi squared prior_inv_chisq(df = 1)

Exponential prior_exponential(beta = 1)

Gamma prior_gamma(alpha = 1, beta = 1)

Inverse Gamma prior_inv_gamma(alpha = 1, beta = 1)

Weibull prior_weibull(alpha = 1, sigma = 1)

Table 3: List of prior distributions.

time Y and the event indicator delta are included on the left-hand side. Moreover, when
dealing with right-censored outcomes, the Y.family parameter should be set to survival.
Depending on the desired model, the user can further specify method = "Cox" for the Weibull-
Cox model or method = "AFT" for the AFT model. Finally, the user must provide a vector of
time points to the survival.time.points argument, which denotes the specific time points
at which survival probabilities will be computed. The estimand is by default estimand =

"probability", which calculates the SACE, but can be customized to estimand = "RACE"

to calculate the RACE.

Multilevel data

PStrata can include random effects in presence of clustered data. This is achieved by spec-
ifying these effects within the S.formula and/or Y.formula using the same syntax as the
widely-used lme4 package. For instance, consider a scenario where an additive random effect
for the outcome is included, with C designating the cluster variable. In this case, the Y-model
is defined as Y.formula = Y ~ X1 + X2 + (1 | C), where (1 | C) implies the inclusion of
a random intercept for each level of C. For more comprehensive guidance on incorporating
random effects, please refer to the documentation of lme4 (Bates et al. 2015).

Non-binary treatment or intermediate variables

The syntax adapts to scenarios involving non-binary treatment or intermediate variables.
Even as the number of strata increases in such cases, the strata parameter can be specified
in a consistent manner. Each stratum is represented by a character string that denotes the
potential values of the intermediate variable. For instance, with a three-arm treatment, each
stratum can be characterized by a string of length three, representing the values of D(0),
D(1), and D(2), respectively.

In scenarios involving multiple intermediate variables, one needs to include all these variables
on the left-hand side of S.formula. For instance, we can specify it as Z + D1 + D2 ~ X1
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+ X2. In this context, each stratum is still represented by a character string. To do this,
consider each intermediate variable separately to get a character string representation and
then concatenate these strings together, separated by the | symbol. Specifically, the stratum
defined by (D1(0), D1(1), D2(0), D2(1)) = (0, 1, 1, 1) can be represented by "01|11".

3.2. Analysis phase

PStrata calls rstan, which provides an R interface to the Stan language to draw samples
from the posterior distribution of the parameters. In the analysis phase, PStrata use these
posterior samples to calculate causal effects and provide summary tables and visualization.

The main function PStrata calls module PSObject and PSSample to do the analysis, and
return a PStrata object containing the model information and posterior samples of the pa-
rameters, which can be used to calculate the stratum probability. Furthermore, modules
PSOutcome and PSContrast can be used to estimate the stratum-specific mean outcome and
causal effects.

The typical PStrata snippet looks like

PStrata(PSobject = NULL, S.formula, Y.formula, Y.family, data = NULL,

strata = NULL, ER = NULL, prior_intercept = prior_flat(),

prior_coefficient = prior_normal(), prior_sigma = prior_inv_gamma(),

prior_alpha = prior_inv_gamma(), prior_lambda = prior_inv_gamma(),

prior_theta = prior_normal(), survival.time.points = 50, filename = NULL, ...)

The summary.PStrata() function syntheses information from the PStrata object and returns
the estimated proportions of each principal stratum. Furthermore, the PSOutcome() function
estimates the expected value of outcomes of each principal stratum, and thePSContrast()

function calculates the contrast of outcomes between treatment groups or strata. When the
contrast is taken between treatment groups, it represents the principal causal effect.

4. Case study of a real application

We demonstrate the PStrata package using a case study that aims to estimate the effect of
hospitalization of influenza vaccine. The data was originally collected and analyzed by Mc-
donald, Hui, and Tierney (1992) and reanalyzed using principal stratification by Hirano et al.
(2000). The study follows a randomized encouragement design: physicians were randomly
selected to receive a letter to remind them to encourage their patients to take flu vaccine.
The treatment Z is the encouragement, the intermediate variable D is the actual vaccina-
tion status of the patient, and the outcome Y is whether the patients had hospital visits for
flu-related reasons. For each patient, several covariates are observed, including age and the
rate of chronic obstructive pulmonary disease (COPD). The conventional Intention-to-Treat
(ITT) approach estimates the causal effect of Zi on Yi, which is the effectiveness of the en-
couragement to vaccinate. Principal stratification can provide information about the efficacy
of the vaccination.

Our illustration follows the analysis in Hirano et al. (2000). Mathematically, the randomized
encouragement design can be framed exactly as a noncompliance problem. Specifically, we can
define four principal strata: always-vaccinated (Si = (1, 1)), never-vaccinated (Si = (0, 0)),
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compliant-vaccinated (Si = (0, 1)), and defiers (Si = (1, 0)). Given that flu vaccination is
not mandatory and can be taken irrespective of encouragement, noncompliance is two-sided
here, that is, non-compliant patients can be either the always-vaccinated or never-vaccinated
strata. We assume monotonicity to rule out defiers, which is deemed plausible in this context.
Furthermore, we assume exclusion restriction for the always-vaccinated and never-vaccinated
strata. The principal causal effect on the compliant-vaccinated patients can be interpreted as
the efficacy of vaccination on hospitalization.

Define S-model and Y-model

Assuming monotonicity, there are three principal strata, and thus we imposed a multinomial
logistic model with three categories as the S-model. The outcome is a binary variable and thus
we imposed a logistic model as the Y-model. We include linear predictors age and COPD into
both the S-model and Y-model. We assumed exclusion restriction for always-compliant and
never-compliant strata. Further, we assume standard normal priors for both intercepts and
coefficients, which are the default in PStrata. We sample from the posterior distribution of
the parameters using 6 chains, each of which contains 2000 iterations including 1000 warm-up
iterations. To speed out the computation, we distribute the sampling job to 6 cores.

R> fit <- PStrata(

+ S.formula = encouragement + vaccination ~ age + copd,

+ Y.formula = hospital ~ age + copd,

+ Y.family = binomial(link = "logit"),

+ data = flu,

+ strata = c(n = "00*", c = "01", a = "11*"),

+ prior_intercept = prior_normal(0, 1),

+ prior_coefficient = prior_normal(0, 1)

+ warmup = 1000, iter = 2000,

+ cores = 6, chains = 6

+ )

The fitted object fit is a PStrata object which contains essential information to calculate
the causal estimands.

R> fit

PStrata Object with 3 strata.

The estimated proportion for each strata:

0.6940673 0.1137423 0.1921904

Use summary() to show confidence intervals.

Use PSOutcome() to show outcomes and PSContrast() to show contrasts.

Estimate stratum proportion

We can use the summary() function to obtain the quantiles of the proportion of each stratum
over the 6000 posterior draws.
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R> summary(fit)

mean sd 2.5% 25% median 75% 97.5%

n 0.6940673 0.01196718 0.6707998 0.6859948 0.6940854 0.7022795 0.7170083

c 0.1137423 0.01621615 0.0803734 0.1034171 0.1138241 0.1246476 0.1455330

a 0.1921904 0.01055071 0.1717857 0.1850637 0.1918401 0.1992098 0.2128891

From the fitted model, 69.4% (CI: 67.1% to 71.7%) of the patients are classified as never-
vaccinated, 19.2% (CI: 17.2% to 21.3%) of the patients are classified as always-vaccinated, and
the remaining 11.4% (CI: 8.0% to 14.6%) are compliant-vaccinated. These values are close to
the non-parametric estimates 71.2%, 18.4% and 10.4% of the three strata, respectively.

Estimate mean effects

R> outcome <- PSOutcome(fit)

R> summary(outcome, "matrix")

mean sd 2.5% 25% median 75% 97.5%

n:0 0.081546 0.007444 0.067090 0.076531 0.081497 0.086451 0.096345

n:1 0.081546 0.007444 0.067090 0.076531 0.081497 0.086451 0.096345

c:0 0.166652 0.063261 0.060931 0.122136 0.160119 0.204622 0.310435

c:1 0.068589 0.027496 0.024559 0.048624 0.065305 0.085192 0.129120

a:0 0.100001 0.014312 0.073536 0.090090 0.099535 0.109130 0.129424

a:1 0.100001 0.014312 0.073536 0.090090 0.099535 0.109130 0.129424

From the output, one can see that the mean outcome for both arms is 0.082 (95% CI: 0.067 to
0.096) for the never-vaccinated, and 0.100 (CI: 0.074 to 0.129) for the always-vaccinated. For
these two strata, the mean outcomes for the treatment arm and the control arm are the same,
which is a consequence of the exclusion restriction assumption. For the compliant-vaccinated,
the mean outcome is 0.167 (CI: 0.061 to 0.310) for the control arm and 0.069 (CI: 0.026 to
0.129) for the treatment arm.

Estimate causal effects

The PSContrast function can be used to calculate the difference of mean outcomes under two
treatment arms.

R> contrast <- PSContrast(outcome, Z = TRUE)

R> summary(contrast, "matrix")

mean sd 2.5% 25% median 75% 97.5%

n:{1}-{0} 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

c:{1}-{0} -0.098063 0.068129 -0.246702 -0.140799 -0.092666 -0.052169 0.022559

a:{1}-{0} 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

In the above snippet, Z = TRUE specifies that we would like to find contrasts between all levels
of treatment Z. The contrasts for never-vaccinated and always-vaccinated are identically zero



16 PStrata: Principal Stratification in R

due to the exclusion restriction assumption. The contrast for the compliers, i.e., the complier
average causal effect, is -0.098 with 95% CI of (-0.247, 0.023).

Conclusion

Results from the principal stratification analysis suggest that, on average, encouragement for
flu vaccination reduces the risk of hospital visits among the compliant-vaccinated patients
by 9.8% with standard error 6.8%. The analysis also reveals heterogeneity between strata.
For instance, the risk of hospitalization for the never-vaccinated and the always-vaccinated
patients is 8.2% (standard error 0.7%) and 10.0% (standard error 1.4%), respectively. These
results are similar to those obtained in Hirano et al. (2000). The slight difference in the
standard error is mainly because of the different prior distribution specifications.

5. Case studies with simulations

This section use simulations to demonstrate PStrata in several more complex scenarios. For
simplicity in illustration, we specify the correct models and do not include covariates in these
examples.

5.1. Case 1: Two intermediate variables

This simulation study features a scenario with two intermediate variables D1 and D2. We
define the principal strata as S = (D1(0), D1(1), D2(0), D2(1)). Here we include 5 out of 16
strata, namely S = {0000, 0001, 0101, 0011, 1111}, and assume exclusion restriction for the
“0000”, “0011” and “1111” strata. There are no baseline covariates.

We simulate 10,000 sample units. We randomly assign principal stratum S and treatment sta-
tus Z to each unit, with the stratum-assignment probability being p = (0.15, 0.3, 0.2, 0.2, 0.15)
and the treatment assignment probability P (Z = 1) = 0.5. The outcome variable Y is sam-
pled from a Gaussian distribution given in Table 4.

Probability Z = 0 Z = 1

S = 0000 0.15 N (3, 1)

S = 0001 0.30 N (−1, 0.5) N (−3, 0.5)

S = 0011 0.20 N (2, 0.5) N (5, 0.5)

S = 0101 0.20 N (−1, 3)

S = 1111 0.15 N (1, 2)

Table 4: Outcome specification for Simulation 2

We run the sampler with 6 chains and 1000 warm-up iterations and 1000 sampling iterations
for each chain. The true values of parameters and the respective posterior means are given in
Table 5. The posterior mean estimates of the stratum probability are generally close to the
true values, although larger discrepancy can be observed for the 0001 and 0011 group. Also,
wide credible intervals are reported for the causal effect in the two strata where exclusion
restriction is not assumed. These are as expected because the principal causal effects in
these strata are weakly identified without additional information such as predictive covariates
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(Imbens and Rubin 1997).

R> fit <- PStrata(

+ S.formula = Z + D1 + D2 ~ 1,

+ Y.formula = Y ~ 1,

+ Y.family = gaussian(),

+ data = data_sim1,

+ strata = c(

+ nn = "00|00*", nc = "00|01", cc = "01|01", na = "00|11*", aa = "11|11*"

+ ),

+ prior_intercept = prior_normal(0, 1),

+ warmup = 1000, iter = 2000,

+ cores = 6, chains = 6

+ )

True value Posterior mean 2.5% quantile 97.5% quantile

Pr(S = 0000) 0.150 0.153 0.141 0.166

Pr(S = 0001) 0.300 0.278 0.247 0.309

Pr(S = 0011) 0.200 0.226 0.192 0.260

Pr(S = 0101) 0.200 0.195 0.186 0.206

Pr(S = 1111) 0.150 0.146 0.139 0.153

E[Y (1) − Y (0) | S = 0001] -2.000 -3.504 -5.072 -1.950

E[Y (1) − Y (0) | S = 0101] 3.000 4.505 2.964 6.046

Table 5: The posterior summary of important quantities with true values in Simulation 2.

5.2. Case 2: Time-to-event outcome

We simulate a randomized experiment with N = 10, 000 units under the non-compliance
setting with binary Z and D and a time-to-event outcome. We assign S ∈ {(0, 0), (0, 1), (1, 1)}
independently with probability 0.25, 0.60 and 0.15, respectively. The treatment assignment Zi

is independently drawn from a Bernoulli(0.5). The true uncensored failure time is generated
from the Weibull-Cox model (2.8), with separate parameters for each of the six combination
of stratum and the treatment assignment. For estimation, we specify the Weibull-Cox model
as

h(t; Si = s, Zi = z) = texp(θs,z)−1 exp(αs,z). (5.1)

Table 6 presents the Y-model parameters for these two scenarios. We draw the censoring
time Ci independently from an exponential distribution with rate 0.3, leading to an event
rate being approximately 35%.

R> fit <- PStrata(

+ S.formula = Z + D ~ 1,

+ Y.formula = Y + delta ~ 1,

+ Y.family = survival(method = "Cox"),



18 PStrata: Principal Stratification in R

Pr(Y (0) | S = s) Pr(Y (1) | S = s)

s Pr(S = s) θs,0 αs,0 θs,1 αs,1

n 0.25 log(2.0) -4.0 log(1.5) -3.0

c 0.60 log(1.5) -2.5 log(1.0) -1.5

a 0.15 log(1.0) -1.0 log(0.6) 0.0

Table 6: Parameters of the true S-model and T-model in simulation 3.

+ data = data_sim2,

+ strata = c(n = "00", c = "01", a = "11"),

+ prior_intercept = prior_normal(0, 1),

+ warmup = 1000, iter = 2000,

+ cores = 6, chains = 6

+ )

R> outcome <- PSOutcome(fit, type = 'probability')

R> plot(outcome) + xlab("time") + ylab("survival probability")

The estimated probabilities for three strata are respectively 0.234 (CI: 0.222 to 0.245), 0.611
(CI: 0.596 to 0.627) and 0.155 (CI: 0.145 to 0.165), close to the true values 0.25, 0.60 and
0.15. With the plot() function, we can visualize the estimated survival probability curves
and their 95% confidence regions (Figure 3). The true survival probability curves are added
for reference. We can also calculate the restricted average causal effect (RACE) by using
option type = “RACE”.

5.3. Case 3: Multilevel data

We simulate a randomized experiment with N = 1, 000 units. We assign S ∈ {(0, 0), (0, 1), (1, 1)}
independently with probability 0.25, 0.50 and 0.25, respectively. The treatment assignment
Zi is independently drawn from a Bernoulli(0.5). To simulate a clustering structure, we
randomly assign these units to 10 clusters, denoted by Ci = j. We sample random effect ξj

from the standard normal distribution for each cluster j. Conditional on the stratum S and
treatment assignment Z, the outcome Y follows a Gaussian distribution where

Y | S = (0, 0), Z = z, X1, X2, C = j ∼ N (X1 − X2 + ξj , 0.3)

Y | S = (0, 1), Z = z, X1, X2, C = j ∼ N (2X1 − (1 + z)X2 + 2 + 6z + ξj , 0.2)

Y | S = (1, 1), Z = z, X1, X2, C = j ∼ N (X1 + X2 − 1 + ξj , 0.2).

We run the sampler with 6 chains and 1000 warm-up iterations and 1000 sampling iterations
for each chain. The true values of stratum probability and the causal effects and the respective
posterior distributions are given in Table 7. The posterior mean estimates of the stratum
probability and the complier average causal effect are close to the corresponding true values.

R> fit <- PStrata(

+ S.formula = Z + D ~ 1,
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Figure 3: Plot of estimated survival probability curves (solid) with 95% confidence region
(shaded). The true survival probability curves are also plotted (dashed).

+ Y.formula = Y ~ X1 + X2 + (1 | C),

+ Y.family = gaussian(),

+ data = data_sim3,

+ strata = c(n = "00*", c = "01", a = "11*"),

+ prior_intercept = prior_normal(0, 1),

+ warmup = 1000, iter = 2000,

+ cores = 6, chains = 6

+ )

True value Posterior mean 2.5% quantile 97.5% quantile

Pr(S = (0, 0)) 0.300 0.281 0.252 0.308

Pr(S = (0, 1)) 0.500 0.520 0.487 0.552

Pr(S = (1, 1)) 0.200 0.199 0.176 0.222

E[Y (1) − Y (0) | S = (0, 1)] 6.000 5.978 5.943 6.012

Table 7: The posterior summary of important quantities with true values in Simulation 4.

6. Summary

Principal stratification is a general framework for handling post-treatment confounded vari-
ables in causal inference. This paper introduces the PStrata package, which targets at filling



20 PStrata: Principal Stratification in R

the gap between the theory and practice of principal stratification. PStrata adopts an in-
novative computing architecture that combines R and Stan to provide a unified computing
platform for a wide range of settings of principal stratification. PStrata is under continuing
development; future developments will extend to the settings with structural missing data
such as truncation by death and recruitment bias, as well as more model diagnostics and
visualization tools.

Computational details

PStrata 0.0.4 was built on R 4.0.3 and dependent on the dplyr 1.0.7 package, the purrr 0.3.4
package, the rstan 2.21.1 package, the lme4 1.1-27.1 package, the ggplot2 3.3.6 package, the
abind 1.4-5 package and the stringr 1.5.0 package. All these packages used are available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/.
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