## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(PMAPscore) ## ----echo = TRUE, results = 'hide',eval=FALSE--------------------------------- # install.packages("PMAPscore") # library(PMAPscore) ## ----out.width=24------------------------------------------------------------- #load the mutation annotation file data("maf_data") #perform the function 'get_mut_status' mut_status<-get_mut_status(maf_data=maf_data,nonsynonymous = TRUE) #view the first five lines of mut_status matrix mut_status[1:5,1:5] ## ----results='hide'----------------------------------------------------------- #Method of obtaining data data(mut_status,gene_Ucox_res,gene_symbol_Entrez) #calculate the pfs_score of single sample pfs_score<-get_pfs_score(mut_status[,1:2],percent=0.03,gene_Ucox_res,gene_symbol_Entrez) #view the first five lines of pfs_score matrix pfs_score[1:5,1:2] ## ----warning=FALSE------------------------------------------------------------ #load pfs_score and survival data data(pfs_score,sur) # filter the survival-related pathways final_signature<-get_final_signature(pfs_score,sur) #view the final_character final_signature ## ----warning=TRUE, paged.print=TRUE------------------------------------------- #Load sample mutation data data(mut_sam,gene_Ucox,symbol_Entrez,path_cox_data,sur,path_Ucox_mul,sig) #Perform the function `get_sample_classification` get_sam_cla(mut_sam,gene_Ucox,symbol_Entrez,path_cox_data,sur,path_Ucox_mul,sig,cut_off=-0.986) #class_res ## ----fig.height=6, fig.width=8,warning=FALSE,results='hold'------------------- #Load the data data(km_data) #Drawing Kaplan-Meier Survival Curves. get_km_survival_curve(km_data,cut_point,TRAIN = TRUE,risk.table=TRUE) ## ----fig.height=6, fig.width=8, warning=FALSE, results='hold'----------------- #Get the data of ROC curve data(roc_data) #Drawing ROC Curves get_roc_curve(roc_data,print.auc=TRUE,main="Objective Response") ## ----fig.height=6, fig.width=8,warning=FALSE,results='hold'------------------- #obtain the risksciore data(km_data) risk_score<-km_data$multiple_score names(risk_score)<-rownames(km_data) cut_off<-median(risk_score) #load the data data(final_signature,path_gene,mut_status,maffile) #draw an GenePathwayOncoplots get_Oncoplots(maffile,path_gene,mut_status,risk_score,cut_off,final_signature,"Gap junction") ## ----fig.height=6, fig.width=8,warning=FALSE,results='hold'------------------- #Load the data data(km_data,response) #Drawing the histogram. get_response_plot(km_data,response,cut_point,TRAIN=TRUE)