## ----------------------------------------------------------------------------- # Setup the data d_sparse <- data.frame( id = c(1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 4L, 5L, 6L, 4L, 5L, 6L, 7L, 8L, 9L, 7L, 8L, 9L), conc = c(0, 0, 0, 1.75, 2.2, 1.58, 4.63, 2.99, 1.52, 3.03, 1.98, 2.22, 3.34, 1.3, 1.22, 3.54, 2.84, 2.55, 0.3, 0.0421, 0.231), time = c(0, 0, 0, 1, 1, 1, 6, 6, 6, 2, 2, 2, 10, 10, 10, 4, 4, 4, 24, 24, 24), dose = c(100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100) ) ## ----------------------------------------------------------------------------- library(ggplot2) ggplot(d_sparse, aes(x=time, y=conc, group=id)) + geom_point() + geom_line() + scale_x_continuous(breaks=seq(0, 24, by=6)) ## ----eval=FALSE--------------------------------------------------------------- # d_sparse$id <- 1:nrow(d_sparse) ## ----------------------------------------------------------------------------- library(PKNCA) o_conc_sparse <- PKNCAconc(d_sparse, conc~time|id, sparse=TRUE) d_intervals <- data.frame( start=0, end=24, aucinf.obs=TRUE, cmax=TRUE, sparse_auclast=TRUE ) o_data_sparse <- PKNCAdata(o_conc_sparse, intervals=d_intervals) o_nca <- pk.nca(o_data_sparse) ## ----------------------------------------------------------------------------- summary(o_nca) ## ----------------------------------------------------------------------------- as.data.frame(o_nca)