## ----output, include=FALSE---------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, message = FALSE, warning = FALSE---------------------------------- # source functions required library(PHEindicatormethods) library(dplyr) ## ----default_example---------------------------------------------------------- # Pass data through SII function --------------------------------------- LE_data_SII <- LE_data %>% # Group the input dataframe to create subgroups to calculate the SII for group_by(Sex, GeoCode) %>% # Run SII function on grouped dataset phe_sii(quantile = Decile, population = Pop , value = LifeExp, value_type = 0, # specify default indicator type confidence = c(0.95, 0.998), se = SE, repetitions = 1000, rii = FALSE, type = "full") # use smaller no. of repetitions e.g. for testing # View first 10 rows of results knitr::kable(head(LE_data_SII, 10)) ## ----rate_example------------------------------------------------------------- # Pass data through SII function --------------------------------------- DSR_data_SII <- DSR_data %>% # Group the input dataframe to create subgroups to calculate the SII for group_by(Period) %>% # Run SII function on grouped dataset phe_sii(quantile = Quintile, population = total_pop , value = value, value_type = 1, # specifies indicator is a rate lower_cl = lowercl, upper_cl = uppercl, transform = TRUE, rii = TRUE, # returns RII as well as SII (default is FALSE) reliability_stat = TRUE) # returns reliability stats (default is FALSE) # View results knitr::kable(DSR_data_SII) ## ----proportion_example------------------------------------------------------- # Pass data through SII function --------------------------------------- prevalence_SII <- prevalence_data %>% # Group the input dataframe to create subgroups to calculate the SII for group_by(Period, SchoolYear, AreaCode) %>% # Format prevalences to be between 0 and 1 mutate(Rate = Rate/100, LCL = LCL/100, UCL = UCL/100) %>% # Run SII function on grouped dataset phe_sii(quantile = Decile, population = Measured, value = Rate, value_type = 2, # specifies indicator is a proportion lower_cl = LCL, upper_cl = UCL, transform = TRUE, multiplier = -100) # negative multiplier to scale SII outputs # View first 10 rows of results knitr::kable(head(prevalence_SII,10))