## ----SETTINGS-knitr, include=FALSE-------------------------------------------- ## knitr settings used to build vignettes library(OncoBayes2) library(posterior) library(RBesT) library(knitr) library(ggplot2) ggplot2::theme_set(bayesplot::bayesplot_theme_get()) knitr::knit_hooks$set(pngquant = knitr::hook_pngquant) knitr::opts_chunk$set( dev = "ragg_png", dpi = 72, fig.retina = 1.5, fig.width = 1.62*4, fig.height = 4, fig.align = "center", out.width = "100%", pngquant = "--speed=1 --quality=50" ) ## ----SETTINGS-sampling, include=FALSE----------------------------------------- ## sampling settings used to build vignettes ## setup up fast sampling when run on CRAN not_CRAN <- Sys.getenv("NOT_CRAN", "false") == "true" ## NOTE: for running this vignette locally, please uncomment the ## following line: ## not_CRAN <- TRUE .user_mc_options <- list() if (!not_CRAN) { .user_mc_options <- options(OncoBayes2.MC.warmup=40, OncoBayes2.MC.iter=100, OncoBayes2.MC.chains=1, OncoBayes2.MC.save_warmup=FALSE, OncoBayes2.MC.control = list(adapt_delta=0.85), mc.cores=1) } else { .user_mc_options <- options(OncoBayes2.MC.warmup=500, OncoBayes2.MC.iter=1000, OncoBayes2.MC.chains=4, OncoBayes2.MC.save_warmup=FALSE, OncoBayes2.MC.control = list(adapt_delta=0.99), mc.cores=1) } set.seed(6475863) ## ----------------------------------------------------------------------------- library(OncoBayes2) library(RBesT) library(posterior) library(ggplot2) library(dplyr) library(tidyr) library(knitr) ## ----mtd_hist, echo = FALSE--------------------------------------------------- knitr::kable( data.frame( Drug = c("Drug A", "Drug B"), "Declared MTD" = c("100mg", "3mg"), check.names = FALSE ) ) ## ----hist_A, echo = FALSE----------------------------------------------------- knitr::kable( data.frame( "Drug A" = c(12.5, 25, 50, 80, 100, 150), "Evaluable patients" = c(1, 1, 3, 9, 23, 3), "DLTs" = c(0, 0, 0, 1, 4, 2), check.names = FALSE ), caption = "Historical data from single-agent study of Drug A" ) ## ----hist_B, echo = FALSE----------------------------------------------------- knitr::kable( data.frame( "Drug B dose" = c(0.125, 0.25, 0.5, 1, 2, 2.5, 3, 4), "Evaluable patients" = c(2, 1, 2, 2, 3, 7, 12, 3), "DLTs" = c(0, 0, 0, 0, 1, 0, 0, 1), check.names = FALSE ), caption = "Historical data from single-agent study of Drug B" ) ## ----heterogeneity, echo = FALSE---------------------------------------------- knitr::kable( data.frame( "Heterogeneity degree" = c("small", "moderate", "substantial", "large", "very large"), "$\\tau_\\alpha$" = c(0.125, 0.25, 0.5, 1.0, 2.0), "$\\tau_\\beta$" = c(0.0625, 0.125, 0.25, 0.5, 1.0), check.names = FALSE ), caption = "Heterogeneity categorization for intercept $\\alpha$ and slope $\\beta$" ) ## ----map_model_A-------------------------------------------------------------- # historical data for drug A hist_A <- data.frame( group_id = factor("trial_A"), drug_A = c(12.5, 25, 50, 80, 100, 150), num_patients = c(1, 1, 3, 9, 23, 3), num_toxicities = c(0, 0, 0, 1, 4, 2) ) # reference dose for drug A dref_A <- 80 # bivariate normal prior for (intercept, log-slope) prior_A <- mixmvnorm(c(1.0, logit(0.2), 0, diag(c(1, (log(4) / 1.96)^2 )))) # between-trial heterogeneity is centered on "substantial" tau_substantial_prior <- mixmvnorm(c(1.0, log(c(0.5, 0.25)), diag(rep(log(2) / 1.96, 2)^2))) # fit the model to the historical data map_model_A <- blrm_exnex( cbind(num_toxicities, num_patients - num_toxicities) ~ 1 + log(drug_A / dref_A) | 0 | group_id, data = hist_A, prior_EX_mu_comp = list(prior_A), prior_EX_tau_comp = tau_substantial_prior, prior_EX_prob_comp = matrix(1, nrow = 1, ncol = 1), prior_tau_dist = 1, sample_map = TRUE ) ## ----map_model_B-------------------------------------------------------------- # historical data for drug B hist_B <- data.frame( group_id = factor("trial_B"), drug_B = c(0.125, 0.25, 0.5, 1, 2, 2.5, 3, 4), num_patients = c(2, 1, 2, 2, 3, 7, 12, 3), num_toxicities = c(0, 0, 0, 0, 1, 0, 0, 1) ) # reference dose dref_B <- 1 # prior for (intercept, log-slope) prior_B <- prior_A # between-trial heterogeneity is centered on "small", but with a # greater degree of uncertainty on this classification tau_small_prior <- mixmvnorm(c(1.0, log(c(0.125, 0.0625)), diag(rep(log(4) / 1.96, 2)^2))) # fit model to historical data map_model_B <- blrm_exnex( cbind(num_toxicities, num_patients - num_toxicities) ~ 1 + log(drug_B / dref_B) | 0 | group_id, data = hist_B, prior_EX_mu_comp = list(prior_B), prior_EX_tau_comp = tau_small_prior, prior_EX_prob_comp = matrix(1, nrow = 1, ncol = 1), prior_tau_dist = 1, sample_map = TRUE ) ## ----beta_group--------------------------------------------------------------- rvar_map_log_beta_A <- as_draws_rvars(map_model_A, variable="map_log_beta")$map_log_beta rvar_map_log_beta_B <- as_draws_rvars(map_model_B, variable="map_log_beta")$map_log_beta ## ----beta_dimnames------------------------------------------------------------ rvar_map_log_beta_A[1,"log(drug_A/dref_A)",,drop=TRUE] rvar_map_log_beta_B[1,"log(drug_B/dref_B)",,drop=TRUE] ## ----mixfit------------------------------------------------------------------- map_mix_A <- automixfit(draws_of(rvar_map_log_beta_A[1,"log(drug_A/dref_A)",,drop=TRUE]), type = "mvnorm") map_mix_A map_mix_B <- automixfit(draws_of(rvar_map_log_beta_B[1,"log(drug_B/dref_B)",,drop=TRUE]), type = "mvnorm") map_mix_B ## ----mixfit_plot_A------------------------------------------------------------ plot(map_mix_A)$mixpairs # plot(map_mix_B)$mixpairs # respective plot for drug B ## ----map_combo---------------------------------------------------------------- # one row of dummy data with number of patients set to zero in order # to allow the model to be fit dummy_data_AB <- data.frame( group_id = factor("trial_AB", levels = c("trial_AB")), drug_A = 1, drug_B = 1, num_patients = 0, num_toxicities = 0 ) interaction_prior <- mixmvnorm(c(1, 0, (log(9)/1.96)^2)) # fit a double-combination model using the MAP priors map_combo <- blrm_exnex( cbind(num_toxicities, num_patients - num_toxicities) ~ 1 + I(log(drug_A / dref_A)) | 1 + I(log(drug_B / dref_B)) | 0 + I(2 * (drug_A/dref_A * drug_B/dref_B) / (1 + drug_A/dref_A * drug_B/dref_B)) | group_id, data = dummy_data_AB, prior_EX_mu_comp = list(map_mix_A, map_mix_B), # BVN mixtures for (log-alpha, log-beta) for drugs A and B prior_EX_mu_inter = interaction_prior, # shut off hierarchical part of model -- prior_tau_dist = NULL ) ## ----plot_map----------------------------------------------------------------- doses <- expand_grid( group_id = "trial_AB", drug_A = c(25, 50, 80, 100), drug_B = c(0.5, 1, 3) ) %>% arrange(drug_B, drug_A) plot_toxicity_curve(map_combo, newdata = doses, x = vars(drug_A), group = ~ drug_B) + theme(legend.position="bottom") ## ----summ_map----------------------------------------------------------------- map_summ <- summary(map_combo, newdata = doses, interval_prob = c(0, 0.16, 0.33, 1)) kable( cbind(doses[c("drug_A", "drug_B")], map_summ[c("mean", "sd", "(0.33,1]")]), col.names = c("Drug A", "Drug B", "mean", "sd", "P(DLT rate > 0.33)"), digits = 2, caption = "Posterior summary statistics for P(DLT) by dose" ) ## ----pred_summ_map------------------------------------------------------------ map_pred_summ <- summary(map_combo, newdata = mutate(doses, num_toxicities=0, num_patients=6), predictive=TRUE, interval_prob = c(-1, 0, 1, 6)) kable( cbind(doses[c("drug_A", "drug_B")], map_pred_summ[c("(-1,0]", "(0,1]", "(1,6]")]), col.names = c("Drug A", "Drug B", "Pr(0 of 6 DLT)", "Pr(1 of 6 DLT)", "Pr(>=2 of 6 DLT)"), digits = 2, caption = "Posterior predictive summary for Pr(DLT) by dose" ) ## ----rmap--------------------------------------------------------------------- # weakly-informative mixture component is chosen here to be equal to # the priors used in the first place weak_A <- prior_A weak_B <- prior_B # adding this to the drug-A and drug-B MAP priors with weight 0.1 mix_A_robust <- mixcombine(map_mix_A, weak_A, weight = c(0.9, 0.1)) mix_B_robust <- mixcombine(map_mix_B, weak_B, weight = c(0.9, 0.1)) # robust MAP priors mix_robust <- list(mix_A_robust, mix_B_robust) # fit a double-combination model using the rMAP priors robust_map_combo <- update(map_combo, prior_EX_mu_comp = mix_robust) ## ----rmap_plot, eval=FALSE---------------------------------------------------- # # disabled plot here # plot_toxicity_curve(robust_map_combo, # newdata = doses, # x = vars(drug_A), # group = ~ drug_B) + # theme(legend.position="bottom") ## ----mac_groups--------------------------------------------------------------- groups <- c("trial_A", "trial_B", "trial_AB") mac_data <- bind_rows_0(hist_A, hist_B) mac_data$group_id <- factor(as.character(mac_data$group_id), levels = groups) ## ----mac_combo---------------------------------------------------------------- dummy_tau_inter <- mixmvnorm(c(1.0, log(1E-4), (log(2) / 1.96)^2)) num_comp <- 2 # number of treatment components num_inter <- 1 num_groups <- length(groups) mac_combo <- blrm_exnex( cbind(num_toxicities, num_patients - num_toxicities) ~ 1 + I(log(drug_A / dref_A)) | 1 + I(log(drug_B / dref_B)) | 0 + I(2 * (drug_A/dref_A * drug_B/dref_B) / (1 + drug_A/dref_A * drug_B/dref_B)) | group_id, data = mac_data, prior_EX_mu_comp = list(prior_A, prior_B), prior_EX_tau_comp = list(tau_substantial_prior, tau_small_prior), prior_EX_mu_inter = interaction_prior, prior_EX_tau_inter = dummy_tau_inter, prior_is_EXNEX_comp = rep(FALSE, num_comp), prior_is_EXNEX_inter = rep(FALSE, num_inter), prior_EX_prob_comp = matrix(1, nrow = num_groups, ncol = num_comp), prior_EX_prob_inter = matrix(1, nrow = num_groups, ncol = num_inter), prior_tau_dist = 1 ) ## ----map_mac_compare---------------------------------------------------------- mac_summ <- summary(mac_combo, newdata = doses, interval_prob = c(0, 0.16, 0.33, 1)) kable( cbind(doses[c("drug_A", "drug_B")], map_summ$mean, mac_summ$mean, abs(map_summ$mean - mac_summ$mean), map_summ[["(0.33,1]"]], mac_summ[["(0.33,1]"]]), col.names = c("Drug A", "Drug B", "MAP mean", "MAC mean", "|MAP mean - MAC mean|", "MAP P(DLT rate > 0.33)", "MAC P(DLT rate > 0.33)"), digits = 2, caption = "Posterior summary statistics for P(DLT) by dose" ) ## ----------------------------------------------------------------------------- map_mix_A ## ----------------------------------------------------------------------------- map_mix_B ## ----------------------------------------------------------------------------- sessionInfo() ## ----include=FALSE------------------------------------------------------------ ## restore previous global user options options(.user_mc_options)