--- title: "opl_dt_c" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{opl_dt_c} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(OPL) ``` ## Introduction The `opl_dt_c` function implements ex-ante treatment assignment using as policy class a 2-layer fixed-depth decision-tree at specific splitting variables and threshold values. ## Usage opl_dt_c(make_cate_result,z,w,c1=NA,c2=NA,c3=NA) ### Output The function performs the following steps: - Standardizes threshold variables to the [0,1] range. - Determines optimal policy assignment using a constrained decision tree approach. - Computes and reports key statistics, including welfare gains and percentage of treated units. - Generates a visualization of the optimal policy assignment. ## Details The `opl_dt_c` function follows these steps: 1. Standardizes selection variables. 2. Implements a grid search over threshold values. 3. Identifies the optimal constrained policy maximizing welfare. 4. Computes summary statistics and visualizes treatment assignment. ## Example ```r # Example data data_example <- data.frame( my_cate = runif(100, -1, 1), X1 = runif(100, 0, 1), X2 = runif(100, 0, 1), treatment = sample(0:1, 100, replace = TRUE) ) # Run the decision tree-based policy learning function opl_dt_c() ``` ## Interpretation of Results - The printed summary provides insights into constrained policy learning outcomes. - The generated plot visualizes the treatment allocation under the optimal decision tree-based policy. ## References - Athey, S., & Wager, S. (2021). Policy Learning with Observational Data. *Econometrica*, 89(1), 133–161. - Cerulli, G. (2021). Improving econometric prediction by machine learning. *Applied Economics Letters*, 28(16), 1419-1425. - Cerulli, G. (2022). Optimal treatment assignment of a learning-based constrained policy: empirical protocol and related issues. *Applied Economics Letters*. DOI: 10.1080/13504851.2022.2032577. - Gareth, J., Witten, D., Hastie, D.T., & Tibshirani, R. (2013). *An Introduction to Statistical Learning: with Applications in R*. New York: Springer. - Kitagawa, T., & Tetenov, A. (2018). Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice. *Econometrica*, 86(2), 591–616. --- This vignette provides an overview of the `opl_dt_c` function and demonstrates its usage for decision tree-based policy learning. For further details, consult the package documentation.