--- title: "GroupEff_par_usage" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{GroupEff_par_usage} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = FALSE ) ``` ## Introduction The `GroupEff_par` function estimates group effects using embeddings and structured input data. This vignette demonstrates the usage of the `GroupEff_par` function with example data included in the package. --- ## Load the Required Library Ensure the `MUGS` package is loaded before running the example: ```{r setup} library(MUGS) ``` --- ## Load the Data Load the required datasets for the example: ```{r load_data} # Load required data data(S.1) data(S.2) data(X.group.source) data(X.group.target) data(U.1) data(U.2) ``` --- ## Prepare Variables Prepare the variables required for the `GroupEff_par` function: ```{r prepare_variables} # Extract names and create name lists names.list.1 <- rownames(S.1) names.list.2 <- rownames(S.2) full.name.list <- c(names.list.1, names.list.2) # Initialize beta matrix beta.names.1 <- unique(c(colnames(X.group.source), colnames(X.group.target))) beta.int <- matrix(0, 400, 10) # Replace with appropriate dimensions rownames(beta.int) <- beta.names.1 ``` --- ## Run the Function Run the `GroupEff_par` function: ```{r run_function, eval=FALSE} GroupEff_par.out <- GroupEff_par( S.MGB = S.1, S.BCH = S.2, n.MGB = 2000, n.BCH = 2000, U.MGB = U.1, U.BCH = U.2, V.MGB = U.1, V.BCH = U.2, X.MGB.group = X.group.source, X.BCH.group = X.group.target, n.group = 400, name.list = full.name.list, beta.int = beta.int, lambda = 0, p = 10, n.core = 2 ) ``` --- ## Examine the Output Explore the structure and key components of the output: ```{r examine_output} # View structure of the output str(GroupEff_par.out) # Print specific components of the result cat("\nEstimated Group Effects:\n") print(GroupEff_par.out$effects[1:5, 1:3]) # Show the first 5 rows and 3 columns of effects cat("\nRegularization Path:\n") print(GroupEff_par.out$path) ``` --- ## Notes 1. **Custom Parameters**: Modify parameters like `n.MGB`, `n.BCH`, `p`, and `lambda` to test different scenarios. 2. **Data Preparation**: Ensure datasets (`S.1`, `S.2`, `U.1`, `U.2`, etc.) are correctly loaded and aligned. 3. **Output**: Key components include the estimated group effects matrix and regularization path. --- ## Summary This vignette demonstrated how to use the `GroupEff_par` function for estimating group effects. Adjust input parameters and datasets to test different scenarios and interpret the output components for your analysis.