--- title: "CodeSiteEff_I2_par_usage" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{CodeSiteEff_I2_par_usage} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ## Introduction The `CodeSiteEff_I2_par` function estimates site-specific effects using input embeddings and penalization methods. This vignette demonstrates how to utilize the function with appropriate input data and parameters. --- ## Load the Required Library Ensure the `MUGS` package is loaded before running the example: ```{r setup} library(MUGS) ``` --- ## Load the Data Load the required datasets for the example: ```{r load_data} # Load required data data(S.1) data(S.2) data(X.group.source) data(X.group.target) data(U.1) data(U.2) ``` --- ## Prepare Variables Set up the variables required for the `CodeSiteEff_I2_par` function: ```{r prepare_variables} # Set parameters n1 <- 100 n2 <- 100 p <- 5 # Ensure row and column names are consistent for matching rownames(U.1) <- as.character(seq_len(nrow(U.1))) # "1" to "100" rownames(U.2) <- as.character(seq(from = 51, length.out = nrow(U.2))) # "51" to "150" # Align S.1 and S.2 with embeddings rownames(S.1) <- rownames(U.1) colnames(S.1) <- rownames(U.1) rownames(S.2) <- rownames(U.2) colnames(S.2) <- rownames(U.2) # Get common codes names.list.1 <- rownames(S.1) names.list.2 <- rownames(S.2) common_codes <- intersect(names.list.1, names.list.2) n.common <- length(common_codes) if (n.common == 0) stop("Error: No common codes found between source and target sites.") full.name.list <- c(names.list.1, names.list.2) # Initialize delta matrix delta.int <- matrix(0, length(full.name.list), p) rownames(delta.int) <- full.name.list ``` --- ## Run the Function Run the `CodeSiteEff_I2_par` function: ```{r run_function} # Estimate site-specific effects CodeSiteEff_l2_par.out <- CodeSiteEff_l2_par( S.1 = S.1, S.2 = S.2, n1 = 100, n2 = 100, U.1 = U.1, U.2 = U.2, V.1= U.1, V.2 = U.2, delta.int = delta.int, lambda.delta = 3000, p=5, common_codes = common_codes, n.common = 50, n.core=2) ``` --- ## Examine the Output Explore the structure and key components of the output: ```{r examine_output} # View structure of the output str(CodeSiteEff_l2_par.out) # Print specific components of the result cat("\nEstimated Effects (Delta):\n") print(CodeSiteEff_l2_par.out$delta[1:5, 1:5]) # First 5 rows and columns of delta matrix cat("\nRegularization Path:\n") print(CodeSiteEff_l2_par.out$path) ``` --- ## Notes 1. **Custom Parameters**: Modify parameters like `n1`, `n2`, `p`, and `lambda.delta` to test different scenarios. 2. **Data Preparation**: Ensure datasets (`S.1`, `S.2`, `U.1`, `U.2`, etc.) are correctly loaded and aligned. 3. **Output**: Key components include the estimated delta matrix and the regularization path. --- ## Summary This vignette demonstrated how to use the `CodeSiteEff_l2_par` function for estimating site-specific effects. Adjust input parameters and datasets to test different scenarios and interpret the output components for your analysis.