## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5, warning = FALSE, eval=rmarkdown::pandoc_available("1.12.3") ) library(MBNMAtime) library(rmarkdown) library(knitr) library(dplyr) library(ggplot2) #load(system.file("extdata", "vignettedata.rda", package="MBNMAtime", mustWork = TRUE)) ## ----results="hide", message=FALSE, eval=FALSE-------------------------------- # # Run an Emax time-course MBNMA using the osteoarthritis dataset # mbnma <- mb.run(network.pain, # fun=temax(pool.emax="rel", method.emax="common", # pool.et50="abs", method.et50="common"), # rho="dunif(0,1)", covar="varadj") ## ----results="hide", message=FALSE, echo=FALSE-------------------------------- # Run an Emax time-course MBNMA using the osteoarthritis dataset network.pain <- mb.network(osteopain) mbnma <- mb.run(network.pain, fun=temax(pool.emax="rel", method.emax="common", pool.et50="abs", method.et50="common"), rho="dunif(0,1)", covar="varadj", n.iter=3000) ## ----results="hide", message=FALSE, eval=rmarkdown::pandoc_available("1.12.3")---- # Specify placebo time-course parameters ref.params <- list(emax=-2) # Predict responses for a selection of treatments using a stochastic E0 and # placebo parameters defined in ref.params to estimate the network reference treatment effect pred <- predict(mbnma, treats=c("Pl_0", "Ce_200", "Du_90", "Et_60", "Lu_400", "Na_1000", "Ox_44", "Ro_25", "Tr_300", "Va_20"), E0=~rnorm(n, 8, 0.5), ref.resp=ref.params) print(pred) ## ----results="hide", message=FALSE, eval=rmarkdown::pandoc_available("1.12.3")---- # Generate a dataset of network reference treatment responses over time placebo.df <- network.pain$data.ab[network.pain$data.ab$treatment==1,] # Predict responses for a selection of treatments using a deterministic E0 and #placebo.df to model the network reference treatment effect pred <- predict(mbnma, treats=c("Pl_0", "Ce_200", "Du_90", "Et_60", "Lu_400", "Na_1000", "Ox_44", "Ro_25", "Tr_300", "Va_20"), E0=10, ref.resp=placebo.df) print(pred) ## ----message=FALSE, eval=rmarkdown::pandoc_available("1.12.3")---------------- plot(pred, overlay.ref=TRUE, disp.obs=TRUE) ## ----fig.height=3, results="hide", eval=FALSE--------------------------------- # # Fit a quadratic time-course MBNMA to the Obesity dataset # network.obese <- mb.network(obesityBW_CFB, reference = "plac") # # mbnma <- mb.run(network.obese, # fun=tpoly(degree=2, # pool.1 = "rel", method.1="common", # pool.2="rel", method.2="common")) # # # Define stochastic values centred at zero for network reference treatment # ref.params <- list(beta.1=~rnorm(n, 0, 0.05), beta.2=~rnorm(n, 0, 0.0001)) # # # Predict responses within the range of the data # pred.obese <- predict(mbnma, times=c(0:50), E0=100, treats = c(1,4,15), # ref.resp=ref.params) # # # Plot predictions # plot(pred.obese, disp.obs = TRUE) ## ----fig.height=3, results="hide", echo=FALSE, message=FALSE------------------ # Fit a quadratic time-course MBNMA to the Obesity dataset network.obese <- mb.network(obesityBW_CFB, reference = "plac") mbnma <- mb.run(network.obese, fun=tpoly(degree=2, pool.1 = "rel", method.1="common", pool.2="rel", method.2="common"), n.iter=3000) # Define stochastic values centred at zero for network reference treatment ref.params <- list(beta.1=~rnorm(n, 0, 0.05), beta.2=~rnorm(n, 0, 0.0001)) # Predict responses within the range of the data pred.obese <- predict(mbnma, times=c(0:50), E0=100, treats = c(1,4,15), ref.resp=ref.params) # Plot predictions plot(pred.obese, disp.obs = TRUE) ## ----results="hide", warning=FALSE-------------------------------------------- # Overlay predictions from lumped NMAs between 5-8 and between 8-15 weeks follow-up plot(pred, overlay.nma=c(5,8,15), n.iter=20000) ## ----------------------------------------------------------------------------- # Predict responses within the range of data pred.obese <- predict(mbnma, times=c(0:50), E0=0, ref.resp = NULL) # Rank predictions at 50 weeks follow-up ranks <- rank(pred.obese, time=50) summary(ranks) plot(ranks)