## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5, warning = FALSE, eval=rmarkdown::pandoc_available("1.12.3") ) library(MBNMAtime) library(rmarkdown) library(knitr) library(dplyr) library(scales) library(RColorBrewer) library(ggplot2) library(ggdist) #load(system.file("extdata", "vignettedata.rda", package="MBNMAtime", mustWork = TRUE)) ## ----warning=FALSE------------------------------------------------------------ # Loops of evidence within the alogliptin dataset network.alog <- mb.network(alog_pcfb) splits.alog <- mb.nodesplit.comparisons(network.alog) print(splits.alog) ## ----eval=FALSE, results="hide"----------------------------------------------- # # Fit a B-spline MBNMA with a knot at 2.5 weeks and # #common relative effects on slope.1 and slope.2 # mbnma <- mb.run(network.pain, # fun=tspline(type="bs", knots=2.5, # pool.1 = "rel", method.1="common", # pool.2 = "rel", method.2="common" # )) # # # Fit a UME model on both spline coefficients simultaneously # ume <- mb.run(network.pain, # fun=tspline(type="bs", knots=2.5, # pool.1 = "rel", method.1="common", # pool.2 = "rel", method.2="common" # ), # UME=TRUE) # # # Fit a UME model on the 1nd coefficient only # ume.slope.1 <- mb.run(network.pain, # fun=tspline(type="bs", knots=2.5, # pool.1 = "rel", method.1="common", # pool.2 = "rel", method.2="common" # ), # UME="beta.1") # # # Fit a UME model on the 2nd coefficient only # ume.slope.2 <- mb.run(network.pain, # fun=tspline(type="bs", knots=2.5, # pool.1 = "rel", method.1="common", # pool.2 = "rel", method.2="common" # ), # UME="beta.2") ## ----echo=FALSE--------------------------------------------------------------- print("Deviance for mbnma: 397.7") print("Deviance for ume on beta.1 and beta.2: 386.0") print("Deviance for ume on beta.1: 385.2") print("Deviance for ume on beta.2: 390.1") ## ----include=FALSE------------------------------------------------------------ load(system.file("extdata", "nodesplit.rda", package="MBNMAtime", mustWork = TRUE)) load(system.file("extdata", "ns.itp.rda", package="MBNMAtime", mustWork = TRUE)) ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # # Nodesplit using an Emax MBNMA # nodesplit <- mb.nodesplit(network.pain, # fun=temax(pool.emax="rel", method.emax = "random", # pool.et50="abs", method.et50 = "common"), # nodesplit.parameters="all" # ) ## ----echo=FALSE, eval=FALSE, include=FALSE------------------------------------ # save(nodesplit, file="inst/extdata/nodesplit.rda") ## ----------------------------------------------------------------------------- print(nodesplit) ## ----fig.height=2.5, fig.show="hold"------------------------------------------ # Plot forest plots of direct and indirect results for each node-split comparison plot(nodesplit, plot.type="forest") # Plot posterior densities of direct and indirect results for each node-split comparisons plot(nodesplit, plot.type="density") ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # # Nodesplit on emax of 1-parameter ITP MBNMA # ns.itp <- mb.nodesplit(network.pain, # fun=titp(pool.emax = "rel", method.emax="common"), # nodesplit.parameters="all") ## ----echo=FALSE, eval=FALSE, include=FALSE------------------------------------ # save(ns.itp, file="inst/extdata/ns.itp.rda") ## ----------------------------------------------------------------------------- print(ns.itp) plot(ns.itp, plot.type="forest")