
A quick introduction to Karen

L. Del Core

l.del.core@rug.nl

September 14, 2022

Abstract

This document reviews some key functionalities of the R package
Karen. Section 1 shows how to simulate a clonal tracking dataset from
a stochastic quasi-reaction network. In particular, we show how to
simulate clone-specific trajectories, following a given set of biochemical
reactions. Subsequently, Section 2 shows how to fit a Kalman Reaction
Network to a simulated clonal tracking dataset. Finally in Section 3
we show how to visualize the results.

1 Simulating clonal tracking datasets

A clonal tracking dataset compatible with Karen’s functions must be format-
ted as a 3-dimensional array Y whose ijk-entry Yijk is the number of cells of
clone k for cell type j collected at time i. The function get.sim.trajectories()
can be used to simulate clone-specific trajectories given an initial condition
X0 for a set of observed ct.lst and latent latSts.lst, and obeying to a par-
ticular cell differentiation network defined by a list rct.lst of biochemical
reactions, subject to a set of linear constraints constr.lst. In particular,
our package considers only three cellular events, such as cell duplication
(Xit → 1), cell death (Xit → ∅) and cell differentiation (Xit → Xjt) for a
clone-specific time counting process

Xt = (X1t, . . . , XNt) (1)

observed in N distinct cell lineages. The time counting process Yt for a single
clone in a time interval (t, t+ ∆t) evolves according to a set of biochemical
reactions defined as

vk =

(0 . . . 1i . . . 0)′ dup. of the i-th cell type
(0 · · · − 1i . . . 0)′ death of the i-th cell type
(0 · · · − 1i . . . 2j . . . 0)′ diff. of the i-th type into the j-th type

(2)

1

HSC

P1 P2

T B NK G M

latent

observed

!	
#	
$	

LEGEND

death
duplication

differentiation

Figure 1: Cell differentiation structure of five observed cell types (white
nodes) and three latent cell types (grey nodes). Duplication, death and dif-
ferentiation moves are indicated with green, red and blue arrows respectively.

with the k-th hazard function given by

hk(Xt, θi) =

Xitαi for duplication
Xitδi for death
Xitλij for differentiation

(3)

Finally, the net-effect matrix and hazard vector are defined as

V =
[
v1 · · · vK

]
; h(Xt; θ) =

[
h1(Xt; θ) · · ·hK(Xt; θ)

]′ (4)

Finally we assume that the simulated measurements yks are noisy-corrupted
and subject to the measurement model

gk(x(tk), rk) = Gkx(tk) + rk; rk ∼ Nd(0, Rk);

Rk = ρ0Id + ρ1diag(Gkx(tk)) ∀k = 1, . . . ,K
(5)

with a time-dependent selection matrix Gk which selects only the measurable
cells of x(tk) with an additive noise rk having a time-dependent covariance
matrix Rk where ρ0 and ρ1 are simulation parameters, and diag(·) is a diag-
onal matrix with diagonal equal to its argument.
The cellular events of duplication, death and differentiation are respectively
coded in the package with the character labels "A->1", "A->0", and "A->B",
where A and B are two distinct cell types. The following R code chunk shows
how to simulate clone-specific trajectories of cells via a Euler-Maruyama
simulation algorithm. As an illustrative example we focus on a simple cell
differentiation network structure from Figure 1 having eight synthetic cell
types. Here we assume that the hematopoietic stem cells HSC, and the
two intermediate progenitors P1 - P2 are latent cell types that cannot be
measured.

rcts <- c("HSC ->P1", ## reactions
"HSC ->P2",

2

"P1 ->T",
"P1 ->B",
"P1 ->NK",
"P2 ->G",
"P2 ->M",
"T->0",
"B->0",
"NK ->0",
"G->0",
"M->0"
,"HSC ->1"
,"P1 ->1"
,"P2 ->1"

)

cnstr <- c("theta \\[\\ ’HSC ->P1\\ ’\\]=(theta \\[\\’P1->T
↪→ \\’\\] + theta \\[\\’P1 ->B\\ ’\\] + theta \\[\\’P1->NK
↪→ \\ ’\\])",

"theta \\[\\’HSC ->P2\\ ’\\]=(theta \\[\\’P2->G
↪→ \\’\\] + theta \\[\\’P2 ->M\\ ’\\])") ##
↪→ reaction constraints

latsts <- c("HSC", "P1", "P2") ## latent cell types

ctps <- unique(setdiff(c(sapply(rcts , function(r){ ## all
↪→ cell types

as.vector(unlist(strsplit(r, split = "->", fixed = T)))
}, simplify = "array")), c("0", "1")))

########## TRUE PARAMETERS ##########
th.true <- c(0.65, 0.9, 0.925 , 0.975, 0.55, 3.5, 3.1, 4,

↪→ 3.7, 4.1, 0.25, 0.225, 0.275) ## dynamic parameters
names(th.true) <- tail(rcts , -length(cnstr))
s2.true <- 1e-8 ## additonal noise
r0.true <- .1 ## intercept noise parameter
r1.true <- .5 ## slope noise parameter
phi.true <- c(th.true , r0.true , r1.true) ## whole vector

↪→ parameter
names(phi.true) <- c(names(th.true), "r0", "r1")

########## SIMULATION PARAMETERS ##########
S <- 1000 ## trajectories length
nCL <- 3 ## number of clones
X0 <- rep(0, length(ctps)) ## initial condition
names(X0) <- ctps
X0["HSC"] <- 100
ntps <- 30 ## number of time -points
f_NA <- .75 ## fraction of observed data

3

########## SIMULATE TRAJECTORIES ##########
XY <- get.sim.trajectories(rct.lst = rcts ,

constr.lst = cnstr ,
latSts.lst = latsts ,
ct.lst = ctps ,
th = th.true ,
S = S,
nCL = nCL ,
X0 = X0,
s2 = s2.true ,
r0 = r0.true ,
r1 = r1.true ,
f = f_NA,
ntps = ntps ,
trunc = FALSE)

XY$X ## process
XY$Y ## measurements

2 Fitting a Kalman Reaction Network

The following R code chunk shows how to fit a Kalman reaction network on
the previously simulated clonal tracking dataset.

nProc <- 1 # number of cores
cat(paste("\tLoading CPU cluster ...\n", sep = ""))
cat(paste("Cluster type: ", "PSOCK\n", sep = ""))
cpu <- Sys.getenv("SLURM_CPUS_ON_NODE", nProc) ## define

↪→ cluster CPUs
hosts <- rep("localhost",cpu)
cl <- parallel :: makeCluster(hosts , type = "PSOCK") ##

↪→ make the cluster
rm(nProc)

mean vector of the initial condition:
m_0 <- replicate(nCL , X0 , simplify = "array")
colnames(m_0) <- 1:nCL
covariance matrix of the initial condition:
P_0 <- Matrix :: Diagonal(length(ctps) * nCL , 1e-5)
rownames(P_0) <- colnames(P_0) <- rep(1:nCL , each =

↪→ length(ctps))
Fit Karen on the simulated data:
res.fit <- get.fit(rct.lst = rcts ,

constr.lst = cnstr ,
latSts.lst = latsts ,
ct.lst = ctps ,
Y = XY$Y[,setdiff(ctps , latsts) ,],
m0 = m_0,

4

P0 = P_0,
cl = cl,
list(nLQR = 3,

lmm = 25,
pgtol = 0,
relErrfct = 1e-5,
tol = 1e-3,
maxit = 100,
maxitEM = 10,
trace = 1,
verbose = TRUE ,
FORCEP = FALSE))

parallel :: stopCluster(cl) ## stop the cluster

3 Visualizing results

The main graphical output of Karen are a cell differentiation network and
the first two order moments of the smoothing distribution. The following
R code chunk shows how to obtain these from a previously fitted Kalman
Reaction Network.

define color legend for cell types:
cell.cols <- c("#1F77B4", "#FF7F0E", "#2CA02C", "#E7B928

↪→ ", "#D62728", "#9467BD", "#8C564B", "#E377C2", "#7
↪→ F7F7F")

names(cell.cols) <- c("HSC", "P1", "P2", "P3", "T", "B",
↪→ "NK", "G", "M")

simulated data and smoothing moments
oldpar <- par(no.readonly = TRUE)

par(mar = c(5,5,2,2), mfrow = c(ceiling(nCL/ceiling(
↪→ sqrt(nCL))),ceiling(sqrt(nCL))))

get.sMoments(res.fit = res.fit , X = XY$X, cell.cols =
↪→ cell.cols)

par(oldpar)

Cell differentiation network
oldpar <- par(no.readonly = TRUE)
legend_image <- grDevices ::as.raster(matrix(

grDevices :: colorRampPalette(c("lightgray", "red", "
↪→ black"))(99), ncol =1))

layout(mat = matrix(c(1,1,1,2), ncol = 1))
par(mar = c(1,0,3,0))
get.cdn(res.fit = res.fit ,

edges.lab = F,
cell.cols = cell.cols)

plot(c(0,1),c(-1,1),type = ’n’, axes = F,xlab = ’’, ylab
↪→ = ’’)

5

text(x=seq(0,1,l=5), y = -.2, labels = seq(0,1,l=5), cex
↪→ = 2, font = 2)

rasterImage(t(legend_image), 0, 0, 1, 1)
par(oldpar)

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

clone 1

t

Y
t

HSC
P1
P2
T
B
NK
G
M

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0
clone 2

t

Y
t

HSC
P1
P2
T
B
NK
G
M

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

clone 3

t
Y

t

HSC
P1
P2
T
B
NK
G
M

HSC

P1 P2

T B NK G M

0 0.25 0.5 0.75 1

6

