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Abstract

Zero-sum normal form games usually come as matrices defining bilinear real-valued func-
tions, for which saddle-point values are sought. This problem is convertible into a linear program-
ming problem, and as such solvable up to large scale. Such games have become popular tools in
security and risk management, where they provide powerful worst-case models of defense against
rationally acting adversaries. A practical difficulty in security is herein commonly the definition
of payoffs, which for risk management, are mostly based on empirical data. Moreover, optimizing
security requires the defender to find a balanced defense regarding several security goals against
one (or many) adversaries. Thus, security risk management games are challenging in several
ways, since (i) their payoffs may be defined only from empirical data, (ii) the data upon which
the model rests is uncertain, and (iii) the optimization is over multiple criteria that may have in-
terdependencies (up to conflicts). The HyRiM package, available from CRAN, supports parts of
the game-theoretic risk management approach by lifting the theory of two-player zero-sum games
from real-valued payoffs to payoff functions whose values are probability densities, and playing
multi-objective zero-sum games over stochastic orders. The package internally uses linear pro-
gramming to compute equilibria and security strategies. Conventional real-valued matrix games
are included as a special case and can be handled by the package too.

1. Introduction

During the last decades game theory evolved as a useful tool to analyse a variety of problems and is
applied in many fields including economics, finance, operations research, conflict analysis, and risk
management. With its increasing popularity and accordingly frequent use, many expansions of the
classical setting introduced by Nash (1950) have been developed. In particular, strong assumptions
such as full rationality of players have been relaxed to bounded rationality of players (Matsushima
1997) and the fact that players may, in reality, make mistakes can be modeled by trembling hand equi-
libria (Selten 1975). However, non-heuristic methods to express uncertainties about the consequences
of actions (Rass 2018) beyond considering higher moments (besides the plain expected payoff), are
relatively new (Rass, König, and Schauer 2015) and calls for software support. We therefore intro-
duce the HyRiM package that supports zero-sum two player games with probability density-valued
payoffs (not only mixing strategies) in R (R Development Core Team 2016). It is available from the
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Comprehensive R Network (CRAN) (Rass and König 2019). Before illustrating its use with several
examples, we give a short overview on the ideas behind games whose rewards are whole distributions
rather than numbers, in the remainder of this section.

The basic issue is perhaps best illustrated with a simple decision problem between two random vari-
ables X and Y : given only their expectations, according to the popular quantitative risk management
definition risk = impact × likelihood (cf., e.g., the ISO 31k Standard International Standards Organi-
sation (ISO) (2018)), finding E(X) < E(Y ) would make action X preferable. But if X measures the
loss of some action, then the expectation says nothing about the variation around it. Thus, action X
may have decent chances to cause much more damage than the alternative action Y . Although Y will
cause larger expected loss, its choice is nonetheless more reliable, since the overall possible damage
is still lower than what action X can result in. Figure 1 depicts the problem (where the distributions
are slightly ill-scaled for the sake of illustration only).

Many situations in risk management thus call for a more complex decision making, say, based on
a stochastic tail order. That is what the package provides at the core, and what we discuss in the
following sections, up to the point where whole games, as non-cooperative decision problems between
multiple rationally acting entities, over stochastic orders can be defined. In security risk management,
those entities are often two, being the defender against the attacker (physically decomposing into
complex structures of interacting people and technical systems, but abstractly being here representable
by two players).

1.1. Ordering Between Random Variables

While the space of probability distributions cannot be ordered in general, there exists a subspace on
which a total order can be constructed based on a representation of a random variable by the sequence
of its moments that can, in turn, be represented by a hyperreal number (Rass, König, and Schauer
2016). The restrictions imposed by this subspace are mild, defining a set F of loss distributions.
We stress that this term differs from the more general one in actuarial science Klugman, Panjer,
and Willmot (1998), and is tailored to the specific domain of security risk management, where our
application originates.

Definition 1 (Loss Distribution) Let X be a random variable that satisfies the following conditions:

• X has a known distribution F with compact support (note that this implies that X is upper-
bounded).

frequency
preferred according to the rule
risk = impact × likelihood

more plausible choice?

low high
damage (categorical scale)

expected loss under action X

expected loss under action Y

Figure 1: Example of risk evaluation issue
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• X ≥ 1 (w.l.o.g., since as X is bounded, we can shift it into the region [1,∞)).

• The probability measure induced byF is either discrete or continuous and has a density function
f . For continuous random variables, the density function is assumed to be continuous.

Then we think of X as a loss and call the distribution F of X a loss distribution. The set of all such
distributions is hereafter denoted as F .

Requirements 1 and 2 guarantee that all moments of X exists while Requirement 3 has purely techni-
cal reasons. On this set of probability distributions one can define a total ordering, via an embedding
of distributions into the field ∗R of hyperreal numbers, which is totally ordered. The embedding is
one-to-one by replacing a distribution by its sequence of moments.

Definition 2 (Preference Relation) We prefer a random variable X to a random variable Y if the
sequence of moments of X diverges slower than the respective sequence for Y . The resulting order is
denoted as X � Y : ⇐⇒ x = (E(Xn))n∈N � (E(Y n))n∈N = y on the ordered field of hyperreal
numbers (∗R,�).

Details on the construction can be found in (Rass et al. 2015, 2016), where it is explicitly shown that
the induced ordering on the random variables is, in fact, independent of the instance of ∗R (i.e., the
same in every ultraproduct defining the hyperreals).

It must be noted that the embedding into the hyperreal space is a purely technical move, and conve-
niently equips us with arithmetic, topologies and the totality of the ordering that comes for free (i.e.,
without needing any further proof). Nonetheless, we will later translate the rather abstract condition of
Definition 2 into the more “handy” form (1), which is better suited to decide the order and establishes
connections to other stochastic orders.

Why not the Usual Stochastic Order?

Let X,Y be random variables with densities fX , fY , let Ω ⊂ R be the union of the respective sup-
ports, and let a := max Ω. In case that fX(a) 6= fY (a), Definition 2 culminates in calling two random
variables ordered as X � Y if and only if there is a value t0 for which

Pr(X > t) ≤ Pr(Y > t) for all t ≥ t0, (1)

i.e., the tails ofX are lighter than those of Y . This is weaker than the usual (standard) stochastic order
(Shaked and Shanthikumar 2006), defining X ≤st Y if and only if

Pr(X > t) ≤ Pr(Y > t) for all t. (2)

Obviously, (2) defines only a partial ordering (we could just haveX and Y with densities that oscillate
around one another), whereas (1) is provably total (under the regularity conditions of Definition 1).
Also, for risk purposes, the parameter t0 has a natural interpretation as implying that low risks are
usually not subject of extra risk management precautions, since they are up to the usual business
continuity management. Risk management, on the other hand, is concerned with extreme events,
such as about which (1) is explicit. The order used by the package does indeed bear relation to other
stochastic orders; a more comprehensive discussion of this is given by Rass et al. (2016).
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Special Case (Representation of Deterministic Values)

The case when losses are crisp is naturally included in the hyperreal construction: a deterministic value
X = a, has a corresponding hyperreal representation as E(Xk) = E(ak) = ak for all k ∈ N, a ≥ 1.
That naturally enables a comparison of a value to a random variable, in the sense of Definition 1.
Moreover, this comparison is practically meaningful, as it comes up a � X if and only if X has
positive likelihood to take on any value larger than a (likewise, the comparison of two values a, b ∈ R
comes up in (∗R,�) as it would in (R,≤)).

Since the package deals only with nondegenerate distributions, comparing values to distributions will
not practically work in the way just described. However, Section 4.1 shows how to represent val-
ues a, b ∈ R as a Bernoulli distributions, to retain the relation a ≤ b in R in the same way using
the Bernoulli representatives. The so-constructed distributions are here just technical vehicles, and
do not provide any information about the original payoff (in particular, moments of these artificial
distributions may have no practical use).

Deciding the Order of Discrete Random Variables

For discrete random variables, the �-comparison of distributions boils down to a humble lexico-
graphic ordering, as Lemma 1 makes precise (see (Rass et al. 2016) for a proof). This holds for
ordered categorical variables (e.g., loss magnitudes ranging from “very low” to “very high”), so that
they can equivalently be described by (integer) ranks.

Definition 3 (Lexicographic Ordering) For two real-valued vectors x = (x1, x2, . . .) and y =
(y1, y2, . . .) of not necessarily the same length, we define x <lex y if and only if there is an index i0
such that xi0 < yi0 and xi = yi whenever i < i0.

Lemma 1 Let F1, F2 be two random variables with support Ω = {z1 > z2 > . . . > zn}, and let
f1,f2 be the respective (empirical) density functions. Then F1 � F2 ⇐⇒ f1 <lex f2, where
fi = (Pr(Fi = z1),Pr(Fi = z2), . . . ,Pr(Fi = zn)) ∈ Rn.

So deciding � for discrete random variables can be done efficiently by deciding the lexicographic or-
der between their empirical distributions, from right to left starting with the highest ranking category.

Deciding the Order of Continuous Random Variables

Let two continuous random variables X ∼ F, Y ∼ G have smooth densities f, g ∈ C∞([1, a]) for
some a > 1. Then the decision of � is possible using a sequence of derivatives of the densities (Rass
et al. 2016):

Lemma 2 (Derivative Criterion) Let f, g ∈ C∞([1, a]) for a real value a > 1 be probability density
functions. If

((−1)k · f (k)(a))k∈N <lex ((−1)k · g(k)(a))k∈N,

then f � g.

The implemented functions make use of this criterion when working with smooth payoffs, here re-
sulting from a kernel density estimation.
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Remark 1 Note that the densities of interest for us are all Lebesgue-integrable, so they have arbitrar-
ily accurate approximations within C∞ (by convolution). Thus, the hypothesis of Lemma 2 is indeed
not too restrictive. The package internally uses a kernel density estimate based on Gaussian kernels,
which therefore puts all distributions that the package uses into C∞.

1.2. Application in Risk- and Security Games

In the following the functionality of the HyRiM package is illustrated by applying it to scenarios from
risk management which is the original field of application of (multi-goal) game-theoretic models Rass
and Schauer (2018). In that setting, player 1 is the defender who tries to minimize the loss (payoff) he
suffers due to an attack by player 2 for d ≥ 1 security goals.

Hereafter, we consider games as non-cooperative competitions between two entities. To ease the
description, we will let the utilities be all real values with the natural ordering ≤. The package later
practically replaces those by density functions and a stochastic order � on them. Besides that, the
theory of games itself remains unchanged. A general n-person game is a triple Γ = (N,S, H),
composed from

• a set N of n = |N | players; typically called by numbers (player 1, player 2, . . . ).

• a family S = {PS1, . . . , PSn} of pure strategies (actions) that each player has. Each set PSi
is discrete and can take any individual number of elements, also of any type. Typically, an
element ai ∈ PS1 is a more or less detailed (up to including textual) description of what the
corresponding player does within each game iteration, and based on what the other players do.
Thus, we implicitly include multi-stage games in which players can take alternating actions
(i.e., games expressed in extensive form), and w.l.o.g., resort to the game being in normal form.

To avoid complications with the existence of equilibria, we will hereafter adopt the symbol

S(X) :=
{

(p1, . . . , p|X|) : pi ≥ 0 ∀i, and
∑

i

pi = 1
}
,

to mean the simplex spanned over the set X . In the game theoretic realm, this corresponds to
the set of randomized actions that a player may take (say, acting differently at random upon
every repetition of the game). Technically, the switch from PSi to Si := S(PSi) convexifies
the action set, and thereby assures the existence of equilibria as proven by Nash (1950) (together
with the continuity of the payoffs, which we describe next). Note thatX ⊆ S(X) always holds,
by using degenerate distributions to represent each single action in X .

• A family H of payoff functions u1, . . . , un, each with domain PS1 × PS2 × · · · × PSn. Each
function ui maps into Rd with d ≥ 1. If d > 1, we write ui and call Γ a multi-objective
(synonymously multi-criteria or multi-goal) game. The real-valued description of the utility
function is what the package mainly replaces by letting u map into a subset of the space of
probability distributions, as Definition 1 describes.

The common object of interest given a game Γ is an equilibrium. This is a (perhaps mixed) strategy
profile (x∗1, . . . ,x∗n) ∈ S1 × S2 × . . .× Sn, that, for all players i ∈ N satisfies

ui(x∗1, . . . ,x∗n) ≤ ui(x∗1, . . . ,x∗i−1,x,x
∗
i+1x∗n) for all x ∈ S(PSi), (3)
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where we assume that all players are minimizing (w.l.o.g., because otherwise, we can just sign-change
the definition of the payoff for a maximizing player to make it minimizing). The package, as being
designed for game theory in general but for risk management and security applications in particular,
will generally assume a minimizing player 1 (defender) as we think of the payoff as a loss.

Equilibria in multiple goals are defined like regular Nash equilibria (3), but replace the ≤-relation by
a vector-version thereof: let a, b ∈ Rn be given, then we write a < b if ai ≤ bi for all coordinates
i = 1, 2, . . . , n. The complement of< is denoted as≥1, i.e., we write a ≥1 b if and only if an index j
exists for which aj ≥ bj , no matter what the other coordinates do. A Pareto-Nash equilibrium is then
defined exactly as (3), only treating≤ as to hold per element (and taking≥1 to denote the complement
relation that automatically holds upon violation of the equilibrium condition).

This concept will later be shown as essential to compute and characterize the notion that alternatively
to an equilibrium is of central importance in security games. In such a competition, the defender acts
as player 1, and seeks to achieve a “best defense” against an arbitrarily acting adversary (player 2),
that is in particular not obliged or otherwise motivated to follow an equilibrium strategy together with
the defender. That is, the incentive (i.e., utility structure) for the adversary is typically unknown, but
as long as the defending player 1 knows the (full) action space for the other player, there is the notion
of a security strategy in such security games. Intuitively, a security strategy is a behavior that may not
optimize the revenues for a player, but guarantees a minimum performance level, here expressed as a
worst-case loss under any behavior of the attacker within its action space PS2. Definition 4 makes
this rigorous, and at the same time, is the primary result object that the package computes.

Definition 4 (Multi-Goal Security Strategy with Assurance (MGSS)) A strategy p∗ ∈ S1 in a two-
person multi-objective game with continuous payoff u1 : S1 × S2→Fd, with F as in Def. 1,
for a (loss-)minimizing player 1, is called a Multi-Goal Security Strategy (MGSS) with Assurance
v = (V1, . . . , Vd) ∈ Fd if two criteria are met:

Assurance: The values in v are the component-wise guaranteed maximal losses for player 1, i.e., for
all components i, we have

u
(i)
1 (p∗, q) � Vi ∀q ∈ S2, (4)

with equality being achieved by at least one choice qi ∈ S2.

Efficiency: At least one assurance becomes void if player 1 deviates from p∗ by playing p 6= p∗. In
that case, some qp ∈ S2 exists (that depends on p) such that

v �1 u1(p, qp). (5)

In the following we show in detail how security games can be set up and solved for MGSS in practice
with help of the HyRiM package (Rass and König 2019) in R. For all the upcoming computations we
assume that the package is installed and loaded by

library(HyRiM)

to have all functions available defined in there. We will show in detail how to construct loss distribu-
tions (both from continuous and discrete data) in Section 2, how to work with them in Section 3, how
to construct games in Section 4, how to compute and understand equilibria in Section 5, how to cus-
tomize plots in Section 6 and give general remarks on the implementation in Section 7. Concluding
remarks are given in Section 8.
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Figure 2: Example plot of loss distribution

2. Construction of Loss Distributions
For the initial demonstration let us create a bunch of arbitrary artificial observations,

dat <- c(rep(1,40), rep(3,20), rep(5,10), rep(7,20),
rep(9,10));

from which a loss distribution can be constructed and plotted directly

ld <- lossDistribution(dat)
plot(ld,

main="Example loss distribution",
xlab="loss category",
ylab="density")

as shown in Figure 2. The plotting function takes the usual additional parameters like titles, axes
labels, axes limits, etc. and passes them onwards to the underlying (R-internal) plot routines.

The lossDistribution() function has some parameters to describe the input in more detail
and customize the fitting. The example constructed above uses the default parameterizations, but the
function can work with continuous and discrete data, internally using a kernel density approximation
in both cases. We describe the respective applications separately.

2.1. Continuous Data

When observations yields samples from a continuous loss variable, the package uses loss distributions
being Gaussian kernel density estimates. The construction allows for external supplies of bandwidth
values but is bound to using the Gaussian kernel, since this choice allows a “closed form” computation
of derivatives to decide the stochastic order using Lemma 2.
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The remaining parameters of lossDistribution() apply only for categorical losses (discussed
in Section 2.2) and are hence ignored for continuous data. The main challenge in the construction
of accurate loss models is thus the proper choice of the bandwidth, as for any other kernel density
estimator. Support by other specialized packages on kernel bandwidth choice is thus recommended.

Version 1.0.0.0 of the package does not support the construction of a loss distribution from a specific
family, say, a Fréchet, Weibull, Gumbel, stable or other typical extreme value or general loss distri-
bution. In such cases, a workaround is sampling random values from the distribution of interest and
reconstructing the loss distribution from the so-obtained sample data. This method obtains an approx-
imate loss distribution of the sought shape. Exact constructions are, however, possible for discrete
loss distributions, as we will exemplify later.

Suppose we want to construct a truncated Weibull-shaped loss distribution, then we proceed as fol-
lows:

# sample from the desired distribution, and shift the
# values into the admissible range [1,inf)
d <- 1 + rweibull(n = 1000, scale = 1, shape = 5)
# reconstruct the loss with the sought shape. The bw
# parameter can replace the default bandwidth choice
# (bw.nrd0) by any more sophisticated computation
ld <- lossDistribution(dat = d, bw = bw.nrd(d))

Figure 3 shows a picture that overlays the standard kernel density estimate (obtained from density(d)),
the true Weibull density, and the loss distribution constructed using the package.

2.2. Discrete Data

If the data is discrete, lossDistribution() accepts either observations (as in the continuous
case; see Section 2.1), but also a pointwise defined probability mass function or the cumulative dis-
tribution function. To construct a discrete loss distribution, just add the flag discrete = TRUE
when calling lossDistribution().

Common to all constructions of loss distributions from categories is the need to specify how many
categories there are. These are always named consecutively and numerically from 1 to a user-
defined maximum number, and told by the parameter supp. For example, to specify a loss distri-
bution on a simple 5 category scale “negligible” < “minor” < “medium” < “large” < “extreme”,
used in security risk management (Gouglidis, König, Green, Rossegger, and Hutchison 2018; König,
Gouglidis, Green, and Solar 2018), we would use the parameter supp = c(1, 5) in all calls to
lossDistribution(). These two parameters (discrete and supp) will thus appear through-
out the upcoming examples.

Constructing Loss Distributions “by Name”

As of version 1.0.0.0, the package does not support direct specification of a loss distribution “by
name”, e.g., an (a, b, 0)-family, but this can be accomplished by evaluating the density and using
the so-obtained data to construct it. For the (a, b, 0)-family, which is popular in actuarial science
(Klugman et al. 1998), loss distributions are known to either be binomial, Poisson, negative binomial
or Panjer, all of which admit the respective functions in R to compute density values that can be fed
as data into lossDistribution(). For example, let us construct a Poisson distribution with rate
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parameter λ = 3 on the loss scale 1, 2, . . . , 10 “directly” using dpois() for the density. To this
end, we tell the function that it is a discrete distribution (discrete = TRUE), the data describes
the probability density function (dataType = "pdf") and the support must be finite (the interval
[1, 10]).

ld <- lossDistribution(dat = dpois(1:10, lambda=3),
discrete = TRUE,
dataType = "pdf",
supp = c(1,10))

## Warning in lossDistribution(dat = dpois(1:10, lambda = 3), discrete
= TRUE, : renormalizing probability mass function

The warning issued by the function is a result from the fact that we truncated the distribution to the
range [1, 10] via specifying the support to be that range (supp = c(1, 10)), but did not ourselves
truncate the mass function beforehand. Internally, lossDistribution() renormalizes the den-
sity to unit sum, which, essentially, is exactly what the (proper) truncation of the distribution would
have done. So, the warning above informs us about this step that should have been done before calling
lossDistribution().

Like in the continuous case, plot() recognizes the type of the distribution and will output a bar plot.
The same result would have been obtained by computing the cumulative distribution function and
instructing lossDistribution() to use this kind of data, yielding the equivalent code sequence

ld <- lossDistribution(dat = ppois(1:10, lambda=3),
discrete = TRUE,
dataType = "cdf",
supp = c(1,10))

that differs from the above bit only in using ppois() for the distribution, and specifying the data
type as "cdf" for cumulative distribution function. The plot, shown in Figure 4 from the latter
construction, however, is identical to the output of the previous call using dpois().

Using Sparse Empirical Data: Kernel Density Estimation and Smoothing

Upon raw observations (the default dataType = "raw"), lossDistribution() internally
constructs a histogram using the provided support (parameter supp) as bins, i.e., categories. It may
well happen that some of these bins remain empty, which typically leads to an error when the loss
is used in a game since the theory (sketched in Section 1) requires the density to be nowhere zero
(equivalently, the support must be a connected set). The problem, however, does not show up during
the construction of the loss distribution, since as an object for themselves, zero likelihood categories
are not forbidden per se. Therefore, the default behavior of lossDistribution() is to take the
data as it is and construct the loss distribution from it. Problems may, however, arise when these
distributions go into a game model later on. A small example creating and illustrating the problem is
the following:
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# create a distribution with gaps (no observation of x=4)
ld1 <- lossDistribution(dat=c(1,1,1,2,3,3,5),

discrete = TRUE, supp = c(1,5))
# another distribution whose support is "too wide"
# (no observation of category 5)
ld2 <- lossDistribution(dat=c(1,1,2,3,3,4,4,4),

discrete = TRUE, supp = c(1,5))

In anticipation of how loss distributions are building blocks in multi-objective zero-sum games (see
Section 4.2), let us look into a minimal example of a game using only these two distributions.

# construct the game
G <- mosg(n=2,m=1,goals=1, losses = list(ld1,ld2))
try(mgss(G)) # compute an equilibrium

## categorical distributions with empty categories are not
allowed. Consider reorganizing the game by smoothing the
loss distributions.Error in mgss(G) :

To handle this kind of error, we have the parameter smoothing that takes one of three values:

none: This is the default behavior for reasons as described above, but which can be problematic if
observations are scarce.

always: This applies a kernel-like smoothing to the data, which we describe in more detail below.

ongaps: This looks into the histogram and smoothes the data if and only if there are empty cate-
gories.

The theory of discrete kernel density smoothing is surprisingly sparse (Rajagopalan and Lall 1995;
Li and Racine 2003; Kokonendji, Kiessé, and Zocchi 2007; Zougab, Adjabi, and Kokonendji 2012;
Kiessé and Cuny 2013; Chu, Henderson, and Parmeter 2015) and only a few implementations seem
to exist so far (Hayfield and Racine 2008; Wansouwé, Kokonendji, and Kolyang 2015; Wansouwé,
Somé, and Kokonendji 2016). The package applies a simple heuristic to smooth categorical data: like
as for continuous kernel density smoothing, it discretizes a Gaussian kernel of bandwidth h into a
distribution that assigns Pr(X = n) = Φ

(
n+ 1

2

)
− Φ

(
n− 1

2

)
for all n ∈ N and with Φ being the

standardized cumulative Gaussian distribution function. For each category c ∈ N, the function evalu-
ates Pr(c± i) for i = 1, 2, . . . , 5 and invokes convolve(), letting the convolution pad with zeroes
outside the support by sending the parameter type = "open" to the function convolve().

This method bears similar asymptotic features as conventional kernel density estimation, since letting
h → 0, the resulting discrete kernel degenerates into the assignment Pr(X = 0) → 1, so that the
convolution’s effect vanishes into returning the data ultimately unmodified when h→ 0. However, for
large h, we get a local averaging to interpolate over empty categories by borrowing mass from nearby
categories to fill the gaps. Practically, it admits the interpretation of assigning uncertainty, quantified
by the parameter h, on the category assignment, and allowing a normally distributed error in it.

The parameter h, expressing the uncertainty, or interpreted as a parameter for the smoothing, is sup-
plied by the parameter bw() to lossDistribution(). Giving an example:
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Figure 5: Example of Handling Empty Loss Categories

# same data as before for 'ld1', but now with smoothing
ld1smoothed <- lossDistribution(dat=c(1,1,1,2,3,3,5),

discrete = TRUE,
supp = c(1,5),
smoothing = "ongaps",
bw=0.5) # parameter "h" from above

Remark 2 Recalling a well known result of Nadaraya (1965), one may wonder where the familiar
condition hn = c · n−α for c > 0 and 0 < α < 1

2 has gone. The reason lies in the discreteness of
the kernel; only the continuous case that Nadaraya’s theorem speaks about requires this additional
condition for convergence.

3. Working with Loss Distributions

The density and cumulative distribution function from any loss distribution is available through the
functions density() and cdf(). Both take the points at which the function needs evaluation,
accepting vectors as inputs as well. Internally, the functions distinguish discrete from categorical
distributions.

3.1. Summary Information and Statistics

Printing summaries uses the well known generic routines, such as:

ld # same output as print(ld) or summary(ld)

##
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## loss distribution for multiobjective security game
(MOSG)
##
## type: categorical
## loss range: 1 to 10
## mean: 3.04647960397752
## variance: 2.73121469797142
## quantiles:
## 10% 25% 50% 75% 90%
## [1,] 1 2 3 4 5

Moments are computed using either numerical integration (for continuous distributions) or by direct
summation for categorical distributions. The mean() and variance() function rely on calls to
moment() (either directly or using Steiner’s theorem). The computation of quantiles uses a bi-
sective search using the same method as cdf() internally in the function quantile(). Unlike
density() and cdf(), the quantile() function takes only scalars (no vectors) as input.

3.2. Preference Relations

Deciding preferences between loss distributions is possible by invoking the preference() func-
tion. The function distinguishes discrete from continuous distributions but also accepts real-valued
arguments, which are internally handled like degenerate distributions.

For non-degenerate distributions, the function applies a lexicographic order on the probability mass
function (see Lemma 1). For continuous distributions, the function evaluates a sequence of points
starting from the end of the support and extending towards zero, and searches for a region where one
density function exceeds the other. Any such region (no matter how small) then determines the �-
order. The number of points into which the support is so discretized can be specified by the parameter
points, which defaults to 512.

Remark 3 The decision of preferences for the computation of equilibria works slightly different; it
does not support comparisons involving numbers (as combining numbers with distributions is not
supported by the package; see Section 4.4 for remarks on the reasons).

Let us show a few examples, comparing distributions to other distributions and numbers.

preference(ld1, ld2, verbose = TRUE)

##
## loss distribution for multiobjective security game
(MOSG)
##
## type: categorical
## loss range: 1 to 4
## mean: 2.75
## variance: 1.4375
## quantiles:



15

## 10% 25% 50% 75% 90%
## [1,] 1 1 3 4 4

preference(ld1, 4) # compare to a fixed category (number)

## [1] 2

preference(ld, 16) # continuous distr. compared to number

## [1] 1

The parameter verbose defaults to FALSE and in that case returns either 1 or 2 (pointing towards
the first or second parameter); returning 0 upon equality. If the output shall be verbose, the function
returns the respectively preferred object.

4. Games

Games solvable by the package are always finite two-player competitions, with a finite number of
goals that player 1 simultaneously minimizes. The game is, for each goal, zero-sum, making player 2
always be a maximizer.

4.1. Constructing Games with Stochastic Payoffs

Let us begin with the more conventional use case of the package, where a real-valued two player
zero-sum matrix game ought to be solved. The function lossDistribution() needs at least two
data points to compute a density due to the necessary bandwidth estimation, so we map real-valued
payoffs to distribution-valued payoffs. The ordering between random variables introduced in Section
1.1 includes the order on the reals via a mapping of the real number x ≥ 1 into a Bernoulli density on
the set {1, 2} with probability Pr(X = 2) ∝ x.

The definition of a game with normal numeric payoffs adopts this technique internally to construct
Bernoulli (i.e., categorical) loss distributions from a list of payoffs. Since the basic pattern according
to which the game is constructed from the list of payoffs applies in all cases, we illustrate the procedure
by starting from a 3×4 real-valued payoff matrix and show how to solve this game using the package.
For simplicity, we start with a single-objective game, introducing multiple goals later on.

Let the example payoff matrix be

A =




4 −1 4 2
3 4 1 −2
−2 1 3 2


 ,

which we assume has already been entered in R as variable A. The function mosg() (multi-objective
security game) takes the dimension of the game via the parameters n (number of rows, actions for
player 1) and m (number of columns, actions for player 2), and the number of goals.

The payoffs are supplied as a list through the parameter losses, which is a vectorized version of the
payoff matrix (or matrices if there are more of them). If the payoffs are already available as a matrix,
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then we can put the parameter losses = as.vector(A), which serializes A column-by-column
into the sought list. Since as.vector works column-by-column, we must instruct mosg() to read
the list according to this pattern, which is done by the parameter byrow = FALSE.

Optionally, a list of textual descriptions for the defender’s, attacker’s strategies and goals can be
supplied via the parameters defensesDescr, attacksDescr and goalDescriptions.

The construction of a game proceeds by calling

G <- mosg(n = 3, m = 4, goals = 1,
losses = as.vector(A), byrow = FALSE)

##
## Multiobjective security game
##
## Shape: 3 x 4
## Goals: 1
##
## Goals:
## 1
## Defense strategies:
## 1 2 3
##
## Attack strategies:
## 1
## 2
## 3
## 4

Remark 4 Observe that the “direct” construction of games from numbers allows supplying negative
values (thus bypassing the restriction imposed by the regularity assumptions given in Definition 1 in
Section 1.1). The function internally shifts all data uniformly into the positive range before defining
the Bernoulli payoffs from there. Figure 6 shows what the plot of the game generated by plot(G)
looks like.

The function mgss() runs runs through a sequence of linear programs to obtain an equilibrium/se-
curity strategy. We postpone the details of the respective function until Section 5.

mgss(G)

##
## equilibrium for multiobjective security game (MOSG)
##
## optimal defense strategy:
## prob.
## 1 0.2391304
## 2 0.5434783
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## 3 0.2173913
##
## worst case attack strategies per goal:
## 1
## 1 0.02173913
## 2 0.36956522
## 3 0.60869565
## 4 0.00000000

The construction of games using probability distributions as payoffs proceeds according to the same
procedure, with the only difference being the list of losses being replaced by a list of objects con-
structed via lossDistribution() (as discussed in Section 2).

Remark 5 Version 1.0.0.0 of the package does not support constructing games from equilibrium dis-
tributions. The reason lies in the internal representation of a loss distribution that differs between
loss distributions obtained by mgss(), and those returned directly by lossDistribution().
The latter uses a representation as a mix of kernel densities, while the other is a pointwise defined
curve. As of version 1.0.0.0, there is no way to define loss distributions pointwise, the respective use
of equilibrium distributions in further game models is thus not supported (in this version).

4.2. Multiple Goals

Multiple payoff structures need to be vectorized in all the same fashion (all row-by-row or all column-
by-column), and go into the losses list consecutively, i.e., letting vec(Ai) denote the vectorized
version of the payoff matrix Ai for i = 1, 2, . . . , d, the list of losses supplied to mosg() takes the
general structure

vec(A1), vec(A2), . . . , vec(Ad)

For instance, the matrices A1 =
(

1 2
3 4

)
and A2 =

(
10 20
30 40

)
would vectorize into the list

(1, 2, 3, 4, 10, 20, 30, 40) row-wise per goal.

An example of such a game using continuous distributions and three security goals has three payoff
structures, accordingly. Figure 7 shows a concrete example of a 2× 2 game with two goals.

4.3. Computing Loss Distributions from Given Strategies

The loss that a game causes for player 1 is for arbitrary mixed strategies x ∈ S(PS1),y ∈ S(PS2)
given by

xT ·Ai · y, (6)

regarding the i-th goal, i.e., loss matrix, Ai in the game (for i = 1, 2, . . . , d).

For a chosen mixed strategy, (6) can be evaluated as follows:

# evaluate the payoff distribution for x = (1/2, 1/2),
# and y = (1/3, 2/3) for the game G1 with
# continuous losses
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Figure 7: Example of a multicriteria game
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my_ld <- lossDistribution.mosg(G1,
player1Strat = c(1/2, 1/2),
player2Strat = c(1/3, 2/3),
goal = 1,
points = 512)

print(my_ld)

##
## loss distribution for multiobjective security game (MOSG)
##
## type: continuous
## loss range: 1 to 10
## mean: 4.68468179867139
## variance: 7.49774749625169
## quantiles:
## 10% 25% 50% 75% 90%
## [1,] 1.429291 2.168121 4.325287 6.770294 8.679718

This function computes (6) pointwise at the specified number of points (512 in the example) over the
(common) support of all losses in the game, and for the goal, specified by index (not name) through
the parameter goal. Figure 8 plots the result.

4.4. Mixing Numeric and Stochastic Payoffs

Payoff types, numeric and stochastic, cannot jointly occur in the same game; the function mosg()
internally checks for a homogeneous type of all payoffs. The theory admits combining all these objects
on the grounds of the common representation of a distribution by moment sequences. However,
such a combination is not necessarily meaningful in practical applications. Consider the following
combinations:

• Continuous + Categorical: this means doing arithmetic on incompatible scales (ordinal out-
comes added to numeric rewards).

• Continuous + Numeric: numeric payoffs correspond to singular distributions (point masses).
Though the stochastic order � covers these cases, the preference between a numeric and a
stochastic payoff would be fixed by definition of the two payoffs. It is possible to trick the
package into using a degenerate distribution if this is explicitly demanded; we describe how to
do this in Section 7.1.

• Categorical + Numeric: this would create the same problems as in combination with the con-
tinuous + categorical combination.

For these practical reasons, the package does not support any such combinations. Comparisons
between numeric and continuous, resp., categorical, distributions are, however, directly supported
through the preference() function (see Section 3.2).

5. Equilibria



21

2 4 6 8 10 12 14

0.
00

0.
05

0.
10

0.
15

0.
20

my_ld

loss

de
ns

ity

Figure 8: Example evaluation of equation (6)



22 HyRiM: A Package for Multicriteria Game Theory over the Space of Probability Distributions

A multi-objective security game constructed by mosg() can directly be fed into the mgss() function
to compute an equilibrium object (of class ‘mosg.equilibrium’), according to Definition 4. In
the sequel, we illustrate how the parameters of the mosg() can be adapted for the computation of an
equilibrium. Before going into the syntax to do the computation, we use the next section to open up
on some background.

5.1. Computation of MGSS

If the game has multivariate payoffs per player, we need to optimize several goals simultaneously to
compute a MGSS by Definition 4. The trick is a transformation of the two-person game with d ≥ 1
goals into a (d + 1)-person game, in which the original defender enters as player 0, opposing one
opponent per goal, i.e., a total of d attackers. The so-defined one-against-all competition is called an
auxiliary game in this context.

Definition 5 (Auxiliary Game) For a multi-objective two-player game Γ with payoff structure F1 =
(F (1)

1 , . . . , F
(d)
1 ) of d ≥ 1 dimensions and arbitrary (unknown) payoff F2, Γ = ({1, 2}, {S1, S2},

{F1,F2}), we define a (d+ 1)-player multi-objective game Γ = (N,S,H) through:

• N = {0, 1, . . . , d} is the set of players

• S = {S1, S2, . . . , S2} is the strategy multiset containing d copies of S2 (one for each opponent
in N )

• the payoffs for all player

– F0(s0, . . . , sd) := (F (1)
1 (s0, s1), . . . , F (d)

1 (s0, sd)) for player 0

– Fi(s0, . . . , sd) := −F (i)
1 (s0, si) for each opponent i = 1, . . . , d

The game Γ is called the auxiliary game for Γ.

The constructed auxiliary game allows computation of a Nash equilibrium by an algorithm due to
Lozovanu, Solomon, and Zelikovsky (2005):

Theorem 3 Let Γ = ({0, . . . , d}, {S0, . . . , Sd}, {F0, . . . ,Fd}) be a (d + 1)-player multi-objective
game, where S0, . . . , Sd are convex compact sets and F0, . . . ,Fd represent vector-valued continuous
payoff functions (where the payoff for player i is composed from ri ≥ 1 values). Further assume that
for every i ∈ {1, . . . , d+ 1} each component F (k)

i (s0, . . . , si−1, si, si+1, . . . , sd+1), k ∈ {1, . . . , ri},
of the function Fi represents a concave function w.r.t. si on Si for fixed s0, . . . , si−1, si+1, . . . , sd+1.
Then the multi-objective game Γ has a Pareto-Nash equilibrium.

Theorem 3, in connection with the next result, is the key to finding multi-objective security strategies
in the sense of Definition 4 (see (Rass 2013) for a proof):

Theorem 4 Let Γ be a two-player multi-objective game with d ≥ 1 distribution-valued payoffs. The
strategy p∗ is a security strategy with assurance v (according to Definition 4) in the game Γ, if and
only if, it is a Pareto-Nash equilibrium strategy for player 0 in the auxiliary (d + 1)-player game Γ
according to Definition 5.
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Theorem 4 allows computation of a security strategy that simultaneously optimizes d ≥ 1 goals by
translating the original game into a one-against-all game with just one goal for the defender (player 0
in the auxiliary game). The attacker, on the other hand, may need to deviate from his optimal strategy
if these are different for different goals (represented by different opponents i) in which case the actual
loss may be smaller than the predicted worst-case loss (i.e., the assurance).

Algorithmic Matters of Computing MGSS

Now, here comes the catch: our embedding of probability distributions into the hyperreal space equips
us with well-defined arithmetic, but leaves us unable to perform all computations in the hyperreal field
(especially divisions are troublesome in absence of an explicitly represented ultrafilter). Thus, we are
bound to algorithms that use a minimum lot of arithmetic. Past versions 1.x.x of the package used
Fictitious Play (FP), giving only approximate equilibria. This was replaced by linear programming in
version 2.0.0. The method relies on the fact that the stochastic order is in some cases equivalent to a
lexicographic ordering on properly constructed vectors. That is, we first play a game using the payoff
structure using just the last coordinate, and obtain a saddle point value v1 there. Then, moving to
the second-last coordinate, we search for an equilibrium under the additional constraint to not worsen
the performance v1 on the last coordinate that we optimized already. This comes to a selection of
optima among equilibrium strategies, and in a way “refines” the equilibrium found in the first round
to one that also optimizes the payoffs in the second coordinate. Calling the optimum v2, we move
to the third-last coordinate, playing a game there as usual, but under the two constraints to preserve
the payoff v1 on the last and v2 on the butlast coordinate, and so on. In this way, we run through a
sequence of linear programs to give us a lex-order optimal solution, corresponding to a �-optimum
as desired. The algorithm is found in more detail in Rass (2015).

Let us wrap-up what we have: Theorem 4 equates the computation of MGSS to the computation of
Pareto-Nash equilibria, and Theorem 3 assures the existence of the latter under conditions that our
game models always satisfy (as being finite games with linear and hence continuous payoff function-
als). Moreover, Lozovanu et al. (2005) give a constructive method to compute a Pareto-Nash equi-
librium as we seek it: it starts with a scalarization of the multi-objective game into a single-objective
game to get back a zero-sum game where linear programming can be used to find equilibria.

Definition 6 (Scalarized Game) For a multi-objective two-player game Γ with payoff structure F1 =
(F (1)

1 , . . . , F
(d)
1 ) of d ≥ 1 dimensions and arbitrary payoff F2, Γ = ({1, 2}, {S1, S2}, {F1,F2}) and

the corresponding (d + 1)-player multi-objective game Γ (as defined in Definition 5), we define a
scalarized game Γsc by first picking a set of values αi > 0 for all goals i = 1, 2, . . . , d and defining
the game to use N and S from Definition 5, and the scalar payoffs fi for all players given by:

• f0(s0, . . . , sd) = α1u1 + . . . + αdud for player 0 where u is player 0’s payoff function in the
auxiliary game

• fi = α1 ·0+ . . .+αi−1 ·0+αi ·(−u(i)
1 )+αi+1 ·0+ . . .+αd ·0 for each opponent i = 1, . . . , d,

where u(i)
1 is the payoff from the original two-person multi-objective game Γ.

The weights αi appearing in Definition 6 are of particular use to prioritize goals (Section 5.2 will
come back to this).

For numerical computation of an equilibrium, one more transformation due to Sela (1999) is needed
to construct a zero-sum game. This so-called reduced game Γscr is a two-player game where the
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second player’s payoff is the sum of the payoffs of all opponents of player 0. The resulting game is
zero-sum by construction and allows for computing equilibria by linear programming. Unfortunately,
(counter)examples show (Rass 2015) that we need the additional hypothesis of all payoff densities to
be strictly positive on the same interval (and hence the package enforces it). This condition is assured
by using Gaussian kernels (whose support is the entire line R) and truncating them all at the same
point (called the “cutoff” point in the context of the package, and further discussed in Section 5.2).

5.2. Customizing the Equilibrium Computation

The parameters of mgss() allow customization of the equilibrium computation.

Goal Prioritization

When computing a MGSS, the weights αi (as they appear in Definition 6) induce a degree of freedom
which can be used to prioritize the different goals (from player 0’s point of view). They can be
understood as representing the different priorities of the corresponding goals, i.e., the most important
goal gets the highest weight. There is no restriction on how the goals are relatively weighted, as long
as all α-values are strictly positive. For example, if goal g1 is half important as goal g2, we may
choose the weights to satisfy 2 · αg1 = αg2 .

Technically, the weights αi enter the mgss() function to compute an MGSS through the argument
weights. If missing, it defaults to a uniform weight assignment on all goals, assuming equal impor-
tance unless specified otherwise.

Cutting the Payoff Distributions

The mgss() function takes the following parameters:

ord: Based on Lemma 2, the package internally approximates the kernel at the tails using a Taylor
series expansion of order ord at x = cutOff. It defaults to 5, since the preference is (with
probability 1) determined by the value of the density at x = cutOff (again, by Lemma 2).

cutOff: This value serves two purposes:

1. The truncation of the loss distribution assures the existence of all moments. The truncation
point defaults to the maximal data range supplied, but practically should be fine-tuned,
since it crucially influences the stochastic orders among the payoffs.

2. It determines the risk region where the preference is decided. For example, within a
risk management process (like ISO31000), one step in the management workflow is the
specification of a threshold of maximal damage, beyond which no further distinction is
made (losses above this value simply count as “extreme” and must be avoided in any case.
This is exactly the value that needs to be supplied by the parameter cutOff.

fbr: if set to TRUE, instruct the function to additionally compute the best replies regarding each goal
individually, assuming that defender plays optimalDefense as a leader, and the attacker per
goal follows (follower’s best reply). These replies are always pure strategies.

points: This is the number of points at which the resulting assured loss distributions are ap-
proximated by lossDistribution.mosg. The mosg.equilibrium object returned
by mgss() contains a spline function to describe the resulting mix density.
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Figure 9: Plotting distributions truncated at x =cutoff

Remark 6 This is the technical reason why equilibrium loss distributions cannot be used to
construct further games, since these expect a kernel density sum representation of the loss
distributions internally.

For numeric stability, however, it is advisable to set cutOff not too far off the numeric range of
the data, since the derivatives of the Gaussian kernels vanish relatively fast (thus creating unwanted
roundoff errors). The default for cutOff, however, is the full numeric range of the data, so this value
should be set explicitly.

The cutoff point has a substantial impact on the resulting equilibrium. For example, computing an
equilibrium if the payoff distributions are truncated at losses ≤ 5 entirely changes the optima for
both, the defender and the attacker, compared to the computation from before (by mgss(G1)):

mgss(G1, cutOff = 5)

## Loading required package: polynom

##
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## equilibrium for multiobjective security game (MOSG)
##
## optimal defense strategy:
## prob.
## d1 1.000000e+00
## d2 -2.020912e-16
##
## worst case attack strategies per goal:
## g1 g2
## a1 0 -1.616416e-15
## a2 1 1.000000e+00

The so-modified game from Figure 7 is shown in Figure 10.

Special Cases in Security Risk Management

Two special cases of two-player zero-sum games are of interest despite their simple structure.

• Evaluation of the status quo: A fixed defence
In the situation where the defender does not have several options to protect his system (that is,
his only defence strategy is the current state) the attacker can directly choose the attack that
maximizes the expected damage because the defenders action is deterministic. In this situation
the payoff matrix has dimension 1 × m, i.e., it reduces to a row vector. The optimization
turns is thus just a maximum computation over a finite set of random variables (that satisfy our
assumptions of Definition 1). Practically, the defender may use this setting to find out which is
the most severe attack in a known list of threats.

• A single attack: Choosing the best among several defences
On the other hand, if we only consider an attacker with only one attack strategy the defender
can directly minimize his expected damage by choosing his best defense, so the optimization
turns into a minimization on a set of loss distributions.

Both cases can be treated by applying the preference function iteratively, i.e., by always com-
paring two distributions at a time. A direct application of this minimization of uncertain variables is
classical risk management. If the (random) consequences of a risk are described by random variables
as used here, the � ordering may be used during risk evaluation. Application to the concept of risk
matrices is illustrated by Schauer, König, Latzenhofer, and Rass (2017).

Things are a bit more involved if several goals are of interest, e.g., if the impact is measured in terms
of money and in terms of reputation. A canonical way to rank two variables is to define a game with
multiple goals and corresponding degenerated payoff matrices (say, 1×mwhere the defender only has
one choice). However, such a game does not directly yield the most severe attack since the equilibrium
is computed through the (m + 1)-player auxiliary game where each opponent acts independently of
the other players. So the equilibrium returns a worst-case attack per goal, which does not necessarily
coincide with the aim of a multi-objective risk optimization. On the other hand, the theory can be
applied when the game is reduced to a single two-player 1 ×m game with scalarized payoffs. This
game yields a pure equilibrium that indicates the worst case attack for player 1.
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Figure 10: Game with loss distributions truncated at cutoff point x = 5
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5.3. Representing the Equilibrium

In order to really understand the computed equilibrium, it is helpful to represent it in several ways.
The generic summary(), print() and plot() functions exist for the resulting equilibrium object
and allow a deeper understanding of the found equilibrium.

Textual Representation

Let us take the game from Figure 7 (here called G1) towards a solution, that in addition includes the
best replies if the defender were to play a fixed strategy, i.e., the attacker would be a follower. We get
this auxiliary information by setting the flag fbr:

eq <- mgss(G1, fbr = TRUE)
print(eq)

##
## equilibrium for multiobjective security game (MOSG)
##
## optimal defense strategy:
## prob.
## d1 0
## d2 1
##
## worst case attack strategies per goal:
## g1 g2
## a1 1.000000e+00 0
## a2 3.459184e-15 1

## Warning in if (!is.na(x$br_to_optimalDefense)) {: Bedingung hat Länge
> 1 und nur das erste Element wird benutzt

##
## best replies per goal, following the (fixed) optimal defense strategy:
## 1 2
## [1,] 1 2

The textual summary description of the equilibrium displays the optimal defense as a categorical
distribution over the action space, labeled with the previously assigned descriptive texts (supplied as
the parameter defensesDescr to mosg()). The example game in Figure 7 has a pure security
strategy being d2, under equal goal priorities, which is the default setting for the α values in Definition
6. Figure 7 visually explains this result with the relatively large losses suffered regarding goal g2 upon
playing strategy d1, since the losses range up to ≈ 13, as opposed to losses bound below 12 under
the alternative strategy d1. More specifically, disregarding goal g2 entirely, strategy g1 would be
clearly preferable. We can confirm this intuition by excluding the second goal from the equilibrium
calculation. To this end, we may assign a very small (yet necessarily positive) weight to the goal to be
excluded, e.g., supply weights=c(0.999,0.001) upon calling mgss() to exclude the second
goal.
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The lowest part labeled with best replies following the (fixed) optimal defense
gives the best replies of the attacker following the attacker. Formally, the attacker would make its
choice then from the row-vector ((x)∗)T ·A, always leading to a pure strategy best reply in this fol-
lower scenario. The function returns the index of the respective best response as a pointer into the list
of strategies. If attack descriptions are available, a more descriptive result can be obtained by calling
G$attacksDescriptions[eq$br_to_optimalDefense].

The equilibrium object carries information about assurance as defined in Section 1.2, and these values
are accessible as fields of the resulting object. If strategies and goals have been named, these names
are useful for accessing the respective objects directly. Again, for the example game plotted in Figure
7:

# get the optimal defense
eq$optimalDefense # this named field is always available

## prob.
## d1 0
## d2 1

# get the worst-case attack strategies
eq$optimalAttacks # this named field is always available

## g1 g2
## a1 1.000000e+00 0
## a2 3.459184e-15 1

# get the assured loss for, say, the second goal "g2",
# either by accessing the second element in the list
# (assurances[[2]]) or by name:
eq$assurances$g2 # the "assurances" field always exists

##
## loss distribution for multiobjective security game (MOSG)
##
## type: continuous
## loss range: 1 to 10
## mean: 5.77388201578312
## variance: 5.5565232808748
## quantiles:
## 10% 25% 50% 75% 90%
## [1,] 2.887177 4.286285 5.31076 7.611298 9.241669

Each object in the list accessible by $assurances is of class mosg.lossdistribution(),
and carries the following fields:

lossdistr: A function taking a single value and returns the density function’s value of the loss
distribution. The inner form of that function depends on whether the object was constructed by
lossDistribution() or mgss():
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• for lossDistribution(), it is a kernel density estimate (explicitly represented as a
sum of Gaussian kernels).

• for mgss(), it is a spline, interpolated at the specified number of points by using
lossDistribution.mosg() internally as described in Section 4.3. This number is
the parameter points given to mgss() before (controlling the accuracy of the compu-
tation).

is.mixedDistribution: A flag indicating whether the distribution is a mix of other loss distri-
butions. The flag is set to FALSE by lossDistribution() and set to TRUE by mgss()
and mosg.lossDistribution().

bw: The bandwidth value that has been used to construct the loss distribution. For mixture distri-
butions as usually constructed by mgss(), this value is set to the maximal bw values of all
distributions in the mix.

observations: This contains the data from which the loss distributions have been constructed
(either raw data or values of the density or cumulative distribution functions, for discrete distri-
butions). The function mgss() sets this value to NULL.

range: The range of the data underlying the game (either the number of categories or the data range
for continuous data).

is.discrete A flag indicating whether the distribution is categorical or continuous.

normalizationFactor: This field is mostly for internal purposes, and may in almost all cases
not be required explicitly. Its inclusion in the output is, however, useful in occasions where the
preference relation underneath the game shall be modified into a pure lexicographical order (see
the Hacks Section 7.1). Yet it can be occasionally useful to modify.

Graphical Representation

Often it is very helpful to have a graphical representation besides the textual description. Figure 11
shows the result of plot(eq). This plot is visually divided into the following areas:

plot of the optimal defense (bar- or density (line) plot)
worst-case adversarial behavior for 1st goal assured loss distr. for 1st goal
worst-case adversarial behavior for 2nd goal assured loss distr. for 2nd goal
...

...
worst-case adversarial behavior for d-th goal assured loss distr. for d-th goal

The mixed distributions come as bar plots, the respective (assured) loss distributions show up as
either bar charts (for games with a discrete payoff structure) or as density line plots (for games with
continuous distributions, like in Figure 7).

6. Customizing the Plots

The default behavior of all plotting routines is mostly unmodified from how R plots line or point
charts. For game matrices, which are essentially matrices of plots, some manual fine-tuning of margins
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Figure 11: Graphical representation of an equilibrium
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and axes ranges may be necessary. That is possible by setting the plot parameters externally using the
par function (as shown in an example below), and by specifying the xlim and ylim parameters for
plot(), with the same syntax and semantic as for any other plotting routine. We illustrate both in
Section 6.2. These parameters are passed through to the underlying plot functions of R.

6.1. Plotting Loss Distributions

Plots of loss distributions allow customization by passing additional parameters to R’s internal plot
routines. Other annotations like legends or additional line plots work as with normal plots.

6.2. Plotting Game Matrices

Invoking the plot() function on a game produces a plot of the payoff matrix. Rows and columns of
the matrix are labeled with the corresponding names of the defence and attack strategies. Each loss
distribution is labeled with the indices (i, j) in the payoff matrix as it represents the loss in case of
attack j when playing defense strategy i.

However, some care is needed in the case of several goals. Simply invoking plot(G) only returns a
plot of the payoff matrix corresponding to the first goal, e.g., for the game from Figure 7

par(omi=c(0.5,0.5,0.5,0.5)) # adjust the margins
# use ylim and xlim to equalize the plots scales
plot(G1,xlim=c(1,15),ylim=c(0,0.3))
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In order to see the payoffs related to other goals, the corresponding parameter goal needs to be used,
e.g.,

plot(G1,goal=2,xlim=c(1,15),ylim=c(0,0.3))
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to see the payoffs related to the second goal.

7. Remarks

7.1. Hacks

This section describes a few tricks to use the package in different ways or to overcome some of the (yet
existing) limitations of it. However, all the methods described below must be used with the greatest
care.

Using a Maximizing First Player

By default (and by the construction of the stochastic � ordering), player 1 is always minimizing.
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For games defined over the reals (see Section 4.1), we can do a sign change to turn player 1 from
minimizing into maximizing.

Less obvious is the case for a game over distributions. The key insight is that a player maximizing the
distribution of a random variable X can equivalently minimize the distribution of the random variable
max(supp(X)) −X + 1. Observe that this is a simple reversal of the loss scale, with the “+1” only
required to shift everything into the admissible range [1,∞). So, if we have raw data = (x1, x2, . . .)
from which we construct empirical distributions, we just need to supply the data max(x) − x + 1
instead when constructing the loss distributions. The game optimization will still go for the low losses,
which, by the reversal, have now become relocated towards the right end of the scale.

For example, the game with the payoff matrix

A =




1 5 2
2 3 −4
3 0 3


 (7)

with a maximizing player has the Nash equilibrium x∗ = (9/23, 3/46, 25/46) ≈ (0.391, 0.065, 0.543),
y∗ = (16/23, 13/46, 1/46) ≈ (0.695, 0.283, 0.022), computed using Gambit (McKelvey, McLen-
nan, and Turocy 2007).

There are two ways of constructing this game in the package for a maximizing first player, both
delivering the same results, which again are approximately equal to the exact equilibrium just given
before.

# obvious method: use -A for the payoffs
version1 <- mosg(n = 3, m = 3, goals = 1,

losses = list(-1, -5, -2, -2, -3, 4, -3, 0, -3))
mgss(version1)

##
## equilibrium for multiobjective security game (MOSG)
##
## optimal defense strategy:
## prob.
## 1 0.39130435
## 2 0.06521739
## 3 0.54347826
##
## worst case attack strategies per goal:
## 1
## 1 0.69565217
## 2 0.28260870
## 3 0.02173913

# general method: use max(A) - A for the payoffs
version2 <- mosg(n = 3, m = 3, goals = 1,

losses = list(4, 0, 3, 3, 2, 9, 2, 5, 2))
mgss(version2)
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##
## equilibrium for multiobjective security game (MOSG)
##
## optimal defense strategy:
## prob.
## 1 0.39130435
## 2 0.06521739
## 3 0.54347826
##
## worst case attack strategies per goal:
## 1
## 1 0.69565217
## 2 0.28260870
## 3 0.02173913

The roundoff errors already visible in this example will be revisited in Section 7.2, where we discuss
their impact on the validity of the output as such.

Replacing the Stochastic by a Lexicographic Order

It is possible (both in theory and in practice) to play games not over stochastic orders, but uses a
lexicographic order on the loss vectors. This may, for example, be relevant when a multi-objective
optimization is such that the goals have a clear priority among them, where a player is first going for
an optimal payoff in the first goal, and the second goal comes into play only to break a tie (likewise
with the third, fourth and other goals). For risk management, it is interesting to fist optimize the
expected damage, and only upon equality, go for the scenario with the smaller second moment (i.e.,
the variance). Next, if the variance is equal, we prefer the distribution that “leans” more towards lower
damages, i.e., has smaller third moment (that relates to risk attitudes; see Wenner (2002)), and so on.

Further, it is possible to prepare the input for the games in a way that equalizes the stochastic �
ordering with a lexicographic ordering on arbitrary values. Let us w.l.o.g. assume that two vectors
a = (a1, . . . , an) and b = (b1, . . . , bn) are given, and that we are interested in playing the game using
the lexicographic order that first looks at (an, bn), and upon equality continues to look at (an−1, bn−1)
and so on. For the example above, we may think of an, bn as being means, an−1, bn−1 being variances,
etc. Note that this way of comparing random variables is exactly the stochastic�-ordering, by Lemma
1, as the densities are compared “pointwise” and in decreasing categorical ranks along the support.

The trick is a conversion of the vectors a, b into new vectors a′, b′ so that

a <lex b ⇐⇒ a′ � b′ (8)

in the stochastic order that the package uses. To this end, pick any sufficiently small value λ > 0 so
that ‖λa‖∞ < 1, ‖λb‖∞ < 1, and ‖λa‖1 < 1, ‖λb‖1 < 1 and define

a′ := (1− ‖λa‖1 , λa), and b′ := (1− ‖λb‖1 , λb). (9)

By definition, a′, b′ are both normalized vectors and hence can be taken as categorical distributions.

We described the conversion here for only two vectors, leaving the general case for n > 2 vectors as a
straightforward extension. The only important fact along these lines is that all vectors in question are
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scaled by the same λ > 0, which is easy to choose if there are only finitely many vectors, implied by
the assumptions that games are finite.

As of version 2.0.0 of the package, one can supply vectors in the list of payoffs. The function mosg()
internally recognizes this and constructs the respective payoff distributions to resemble the lexico-
graphic ordering just as described above.

We will show that (8) holds under this construction.

“⇒”: Let i be the largest index so that aj = bj for j > i, i.e., i is the “earliest” coordinate of difference
encountered when we start from the right. If i > 1, then a � b, because we have λai < λbi and
λ > 0. Since � is equivalent to a lexicographic ordering and the first index was not even looked at,
the claim follows from Lemma 1.

Otherwise, if i = 1, then aj = bj for all j > 1 and hence a = b. But in that case, we must also have
1− ‖λa‖1 = 1− ‖λb‖1, so the vectors are identical and hence a � b holds with equality.

“⇐”: Let i be defined as before. If i > 1, then a′i = λai < b′i = λbi, using Lemma 1 again to describe
� by a lexicographic order. In that case, however, we have an index in a, b for which ai < bi, thus
putting them in order a <lex b, since λai = a′j = b′j = λbi for all j > i and after dividing by λ > 0.

Otherwise, if i = 1, then a′i = b′i by the same token as before, and we have a′ identical to b′ under the
equivalence relation induced by �. This implies a = b, so that the two also match lexicographically.

�
If a general game shall work with the lexicographic order of payoff vectors instead of distribution-
valued payoffs, the procedure to use the package is thus the following:

1. Shift all payoffs into a strictly positive range, and find a common factor λ > 0 that scales all
payoffs into the half-open unit interval [0, 1).

2. Add an artificial “leftmost” category for the purpose of normalizing the resulting scaled vectors,
i.e., write all payoff vectors a in the form a′ as in (9).

3. For each such vector a′, construct the payoff distribution by supplying a′ as data to describe
the probability density function, i.e., use

lossDistribution(dat = a′, dataType = "pdf",

smoothing = "none", ...)

4. Construct and solve the game as any other game, but bear in mind that the outputs of other
functions like mean(), quantile() are all invalidated (as this is still a hack of the package).
For the same reason, plots must be interpreted with care.

Using Degenerate Distributions with Non-Degenerates

Including degenerate distributions in the payoff structure may be meaningful if the goals that differ-
ent kinds of distributions refer to are separated. That is, we may have one goal with all continuous
distributions, coexisting with another goal that has all real-valued (degenerate) distributions, for ex-
ample, if we want to optimize over damage distributions and also seeks to minimize disappointment
rates, which is a real-valued payoff. The disappointment rate discussed by Wachter, Rass, König, and
Schauer (2018) is here understood as the value d = Pr(X > E(X)), i.e., the chances that the game
delivers more loss than expected (hence, “disappointing” player 1 in a round, though it may come out
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opposite in other rounds; but this anyway meets player 1’s expectation as an upper bound to the loss).
In version 1.0.0.0 of the package, this is not supported, but the package can be tricked to accept such
inputs.

Suppose that we have a real-valued payoff structure that shall be used with another that consists of
distributions; depending on the type, the construction of the inputs proceeds differently. Without loss
of generality, let us assume that the real-valued payoff structure has been scaled and shifted to be a
matrix A ∈ [0, 1)n×m.

For discrete distributions over k categories, one can “embed” a real value aij into a discrete density
function with masses (ε, ε, . . . , ε, 1 − ((k − 2)ε + aij), aij) for some sufficiently small ε that we
choose to be the same for all aij . Like before, the stochastic order on the so-constructed probability
mass functions (vectors) will then resemble the ordering of the real-valued payoffs in A. In a way,
this is a generalization of the Bernoulli representation that was used in Section 4.1, only extended to
more than two categories, so that the representatives are compatible with the other payoff structures.

This trick fails for continuous distributions. In that case, we recommend adopting a “converse” ap-
proach: Theorem 14 in (Rass, König, and Schauer 2017) shows how to convert a distribution-valued
game into a real-valued game whose equilibria are approximately equal, meaning that the equilibrium
strategies in both games differ by no more than ε > 0 in the 1-norm; ε can herein be made as small as
desired. Such a conversion then allows combining real-valued with distribution-valued payoff struc-
tures, at the price of resorting to another approximate version of the original game. This conversion,
however, is currently not supported by the package.

7.2. Known Limitations and Issues

In version 1.0.0.0 of the package, known issues can broadly be divided into yet to be implemented
functionality for the user, and numerical inaccuracy by roundoff errors. We shall discuss the latter in
more detail below, and start with some convenience functions that are planned for inclusion in future
versions.

Manipulating the Game Payoff Structure

Currently, games can only be manipulated by replacing single entries in the payoff matrix “manually”.
Say, to replace the ij-th entry for the k-th goal in the game G, we can compute the index
idx <- G$loc(i,j,k)
in the losses list, and then replace the entry accordingly by reassigning a new value:
G$losses[[idx]] <- new_loss_distribution

Bulk replacement or extraction syntax as for matrices (e.g., getting a whole row of A as A[i,] or
similar) are not available for game structures at this point.

Plotting

Plotting large games may yield to undesirably small scaled plots in the matrices, so plotting games
beyond five dimensions may not be too “visually expressive”. However, it is possible to play around
with the par() function to override the inner and outer margins; the plot() routines take these
values as set externally.

8. Outlook
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Future features planned include improvements on the known issues and limitations as outlined in
Section 7.2, but also adding the possibility to specify a continuous distribution pointwise (so as to use
a “named” loss distribution in the continuous setting).
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