## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----libraries---------------------------------------------------------------- library(polynom) library(HomomorphicEncryption) ## ----params------------------------------------------------------------------- d = 4 # n and d need to be renamed throughout the package n = 2^d p = 11 q = p * 15000 pm = GenPolyMod(n) ## ----------------------------------------------------------------------------- set.seed(123) ## ----------------------------------------------------------------------------- # generate a secret key s = GenSecretKey(n) # generate a a = GenA(n, q) # generate the error e = GenError(n/10) # need to figure out how this division can be removed, by scaling q/p ## ----------------------------------------------------------------------------- # generate the public key pk0 = GenPubKey0(a, s, e, pm, q) pk1 = GenPubKey1(a) ## ----------------------------------------------------------------------------- ek0 = GenEvalKey0(a, s, e) ek1 = a ## ----------------------------------------------------------------------------- # polynomials for encryption e1 = GenError(n) e2 = GenError(n) u = GenU(n) ## ----------------------------------------------------------------------------- m1 = polynomial(c(3, 2, 2)) m2 = polynomial(c(0, 2 )) ## ----------------------------------------------------------------------------- m1_ct0 = EncryptPoly0(m1, pk0, u, e1, p, pm, q) m1_ct1 = EncryptPoly1( pk1, u, e2, pm, q) m2_ct0 = EncryptPoly0(m2, pk0, u, e1, p, pm, q) m2_ct1 = EncryptPoly1( pk1, u, e2, pm, q) ## ----------------------------------------------------------------------------- multi_ct0 = m1_ct0 * m2_ct0 * (p/q) multi_ct0 = multi_ct0 %% pm multi_ct0 = CoefMod(multi_ct0, q) multi_ct0 = round(multi_ct0) # the rounding should come before the mod (both of the mods) multi_ct1 = (m1_ct0 * m2_ct1 + m1_ct1 * m2_ct0) * (p/q) multi_ct1 = multi_ct1 %% pm multi_ct1 = CoefMod(multi_ct1, q) multi_ct1 = round(multi_ct1) multi_ct2 = (m1_ct1 * m2_ct1) * (p/q) multi_ct2 = multi_ct2 %% pm multi_ct2 = CoefMod(multi_ct2, q) multi_ct2 = round(multi_ct2) ## ----------------------------------------------------------------------------- ct0hat = CoefMod(multi_ct0 + ek0 * multi_ct2 %% pm, q) ct1hat = CoefMod(multi_ct1 + ek1 * multi_ct2 %% pm, q) ## ----------------------------------------------------------------------------- decrypt = ct0hat + ct1hat * s decrypt = decrypt %% pm decrypt = CoefMod(decrypt, q) # rescale decrypt = decrypt * p/q # round then mod p decrypt = CoefMod(round(decrypt), p) print(decrypt)