## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set( echo = TRUE, python.reticulate = FALSE ) ## ----eval=FALSE--------------------------------------------------------------- # calculateCounts = function(data=c(), parameters=c()) { # # data: 3 column matrix with acc data # # parameters: the sample rate of data # library("activityCounts") # if (ncol(data) == 4) data = data[,2:4] # mycounts = counts(data = data, hertz = parameters, # x_axis = 1, y_axis = 2, z_axis = 3, # start_time = Sys.time()) # mycounts = mycounts[,2:4] #Note: do not provide timestamps to GGIR # return(mycounts) # } ## ----eval=FALSE--------------------------------------------------------------- # source("~/calculateCounts.R") # myfun = list(FUN = calculateCounts, # parameters = 30, # expected_sample_rate = 30, # expected_unit = "g", # colnames = c("countsX","countsY","countsZ"), # outputres = 1, # minlength = 1, # outputtype = "numeric", # aggfunction = sum, # timestamp = F, # reporttype = c("scalar", "scalar", "scalar")) ## ----eval=FALSE--------------------------------------------------------------- # library(GGIR) # GGIR(datadir = "~/myaccelerometerdata", # outputdir = "~/myresults", # mode = 1:2, # epochvalues2csv = TRUE, # do.report = 2, # myfun = myfun) #<= this is where object myfun is provided to GGIR ## ----eval=FALSE--------------------------------------------------------------- # dominant_frequency = function(data=c(), parameters=c()) { # # data: 3 column matrix with acc data # # parameters: the sample rate of data # source_python("dominant_frequency.py") # sf=parameters # N = nrow(data) # ws = 5 # windowsize # if (ncol(data) == 4) data= data[,2:4] # data = data.frame(t = floor(seq(0,(N - 1)/sf, by = 1/sf)/ws), # x = data[,1], y = data[,2], z = data[,3]) # df = aggregate(data, by = list(data$t), # FUN=function(x) {return(dominant_frequency(x, sf))}) # df = df[, -c(1:2)] # return(df) # } # } ## ----eval=FALSE--------------------------------------------------------------- # library("reticulate") # use_virtualenv("~/myvenv", required = TRUE) # Local Python environment # py_install("numpy", pip = TRUE) # ## ----eval=FALSE--------------------------------------------------------------- # source("~/dominant_frequency.R") # myfun = list(FUN = dominant_frequency, # parameters = 30, # expected_sample_rate = 30, # expected_unit = "g", # colnames = c("domfreqX", "domfreqY", "domfreqZ"), # minlength = 5, # outputres = 5, # outputtype = "numeric", # aggfunction = median # timestamp = F, # reporttype = c("scalar", "scalar", "scalar")) ## ----eval=FALSE--------------------------------------------------------------- # library(GGIR) # GGIR(datadir = "~/myaccelerometerdata", # outputdir = "~/myresults", # mode = 1:2, # epochvalues2csv = TRUE, # do.report = 2, # myfun = myfun, # do.parallel = FALSE)