--- title: "Introduction to FARS" author: "Gian Pietro Bellocca" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{introduction} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} vignettes: true --- # Introduction The `FARS` package provides a comprehensive framework for modeling and forecasting economic scenarios based on the Multilevel Dynamic Factor Model (MLDFM). # Installation ```{r} # Install FARS from CRAN #install.packages("FARS") # Install FARS from GitHub #install.packages("devtools") #devtools::install_github("GPEBellocca/FARS") library(FARS) ``` # Input data ```{r} library(zoo) library(readxl) # Input dep variable data_input_path <- system.file("extdata", "Data_IMF.xlsx", package = "FARS") data_input <- read_excel(data_input_path, sheet = "data") data_ts <- ts(data_input[, -1], frequency = 4) data_diff <- diff(log(data_ts)) * 400 dep_variable <- data_diff[, 'United States', drop = FALSE] dep_variable <- dep_variable[2:60] # Input data data_df_path <- system.file("extdata", "DataBase.xlsx", package = "FARS") data_df <- openxlsx::read.xlsx(data_df_path, sheet = "fulldata", cols = 2:625) data_df <- data_df[,1:519] data <- as.matrix(data_df) dimnames(data) <- NULL # Generate dates quarters <- as.yearqtr(seq(from = as.yearqtr("2005 Q2"), by = 0.25, length.out = 59)) dates <- as.Date(quarters) ``` # MLDFM Model This section demonstrates how to use the mldfm function to fit the Multilevel Dynamic Factor Model using the input data. ```{r} # MULTI-LEVEL DYNAMIC FACTOR MODEL # 3 blocks n_blocks <- 3 # 63 248 208 block_ind <- c(63,311,519) r <- c(1,0,1,0,1,1,1) mldfm_result <- mldfm(data, r=r, blocks = n_blocks, block_ind = block_ind , tol = 1e-6, max_iter = 1000, method = 0) # Plot factors # plot(mldfm_result, dates = dates) ``` # Subsampling ```{r} # Subsampling n_samples <- 100 sample_size <- 0.9 mldfm_subsampling_result <- mldfm_subsampling(data, r=r, blocks = n_blocks, block_ind = block_ind , tol = 1e-6, max_iter = 1000, method = 0, n_samples = n_samples, sample_size = sample_size, seed = 123) ``` # Creating stressed scenarios ```{r} # Create stressed scenario scenario <- create_scenario(model = mldfm_result, subsample = mldfm_subsampling_result, data = data, block_ind = block_ind, alpha=0.95) ``` # FARS computation ```{r} # Compute Quantiles fars_result <- compute_fars(dep_variable, mldfm_result$Factors, scenario = scenario, h = 1, edge = 0.05, min = TRUE) # Plot quantiles plot(fars_result,dates=dates) ``` # Density Estimation ```{r} # Density density <- nl_density(fars_result$Quantiles, levels = fars_result$Levels, est_points = 512, random_samples = 100000, seed = 123) # Plot density # plot(density, time_index = dates) ``` # Growth-at-Risk (GaR) ```{r} #GaR GaR0.05 <- quantile_risk(density, QTAU = 0.05) GaR0.50 <- quantile_risk(density, QTAU = 0.50) GaR0.95 <- quantile_risk(density, QTAU = 0.95) ``` # Scenario Density Estimation ```{r} # Scenario Density scenario_density <- nl_density(fars_result$Scenario_Quantiles, levels = fars_result$Levels, est_points = 512, random_samples = 100000, seed = 123) ``` # Growth-in-Stress (GiS) ```{r} #GiS GiS0.05 <- quantile_risk(scenario_density, QTAU = 0.05) GiS0.25 <- quantile_risk(scenario_density, QTAU = 0.25) GiS0.50 <- quantile_risk(scenario_density, QTAU = 0.50) GiS0.75 <- quantile_risk(scenario_density, QTAU = 0.75) GiS0.95 <- quantile_risk(scenario_density, QTAU = 0.95) ``` # Final GaR and GiS Plot ```{r} # Final GaR and GiS plot library(ggplot2) time <- dates[-1] MLGaRGiS <- data.frame( time = time, dep_variable = as.vector(dep_variable[2:59]), GaR.05 = as.vector(GaR0.05[1:58]), GaR.95 = as.vector(GaR0.95[1:58]), GiS.05 = as.vector(GiS0.05[1:58]), GiS.25 = as.vector(GiS0.25[1:58]), GiS.75 = as.vector(GiS0.75[1:58]), GiS.95 = as.vector(GiS0.95[1:58]) ) p <- ggplot(MLGaRGiS,aes(x=time,y=dep_variable)) + geom_line() + theme_bw()+ geom_ribbon(aes(ymin=GiS.05,ymax=GiS.95), alpha=0.1, fill="red") + geom_ribbon(aes(ymin=GiS.25,ymax=GiS.75), alpha=0.1, fill="grey10") + geom_line(aes(x=time, GaR.05), linewidth=0.1, colour="black", linetype="dashed") + geom_line(aes(x=time, GaR.95), linewidth=0.1, colour="black", linetype="dashed") + scale_y_continuous("Growth") + scale_x_date(date_labels = "%Y", date_breaks = "2 years") + theme(axis.text.x = element_text(angle = 90)) fig <- plotly::ggplotly(p) fig ```