--- title: "manuscript_reproducible" author: "Anne-Cecile Lesage, PhD, Oliver Zhou, BA, Jiefei Wang, PhD" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{manuscript_reproducible} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.align = "center", fig.width = 10, fig.height = 8 ) ``` This vignette shows how to reproduce results from the companion software paper of the EZFragility CRAN R package for the first seizure of patients 01 and 26. This allows to check how well the EZFragility package reproduces results from the original neural fragility paper (see Figure 4 and extended seizure 4) ## Load the package and data ```{r} library(EZFragility) library(Epoch) library(ggplot2) library(ggtext) library(gsignal) ``` ## Data preprocess (Not included in the package) To allow fast and easy exploration of fragility results, we preprocessed the multipatient data from the OpenNeuro Fragility Data Set with RAVE 2.0 . Main steps included Notch filtering to remove power line interference, re-referencing, and epoching based on seizure onset time to isolate relevant segments of [-30:30s]. ## Download Data To access the preprocessed data, you can use the `EpochDownloader` class from the `Epoch` package. The following code downloads the data and lists the available datasets. ```{r} dl<-EpochDownloader(progress = FALSE) names(dl) ``` The preprocessed voltage data from patient pt01 seizure 1 and pt26 seizure 1 can be loaded by ```{r} pt01sz1 <- dl$FragilityData_subpt01_1 pt01sz1 pt26sz1 <- dl$FragilityData_subjh103_1 pt26sz1 ``` ## Remove Artifacts The following function applies a band-pass filter voltage between 0.5 and Nyquist frequency with fourth-order Butterworth filter to the `Epoch` objects to remove artifacts. ```{r} butterworthFilter <- function(epoch) { order <- 4 sampling_freq <- metaData(epoch)$samplingRate nyquist_freq <- sampling_freq / 2 lowpass <- 0.5 highpass <- nyquist_freq * 0.99 normalized_freqs <- c(lowpass, highpass) / nyquist_freq filter_type <- "pass" butter_filter <- gsignal::butter( n = order, w = normalized_freqs, type = filter_type) # Apply filter to epoch data mat <- tblData(epoch) # Apply zero-phase filtering (filtfilt) to each row filtered_data <- gsignal::filtfilt( filt = butter_filter, x = t(mat)) filtered_data <- t(filtered_data) tblData(epoch) <- filtered_data epoch } ``` We apply the filter to the epochs and clip the data to the relevant time window of [-10:10s] around seizure onset: ```{r} pt01sz1Clipped <- pt01sz1 |> crop(start=-10, end=10) |> butterworthFilter() pt01sz1Clipped pt26sz1Clipped <- pt26sz1 |> crop(start=-10, end=10) |> butterworthFilter() pt26sz1Clipped ``` ## Visualize Voltage Plot The following function reproduce the voltage plot for a display subset of electrodes in the original Figure 4. The SOZ electrode names are highlighted in red as in the original paper. ```{r} visualSOZ <- function(epoch, sozNames) { p <- plot(epoch) elecColor <- rep("black", nrow(epoch)) elecColor[rownames(epoch) %in% sozNames] <- 'red' elecColor <- rev(elecColor) # match the electrode order in the plot p + geom_vline(xintercept = 0, color = "black", linetype = "dashed", linewidth = 1)+ theme(axis.text.y = element_markdown(colour = elecColor)) } ``` To visualize patient 01 seizure 1: ```{r} pt01sozName <- rownames(pt01sz1Clipped)[rowData(pt01sz1Clipped)$soz] pt01Display <- c(pt01sozName, "MLT1", "MLT2", "MLT3", "MLT4") pt01sz1Reordered <- pt01sz1Clipped[pt01Display, ] visualSOZ(pt01sz1Reordered, pt01sozName) ``` To visualize patient 26 seizure 1, we explicitly exclude the electrodes `RTG29`, `RTG30`, `RTG31`, and `RTG32` from the SOZ electrodes, as they are not part of the SOZ in the original paper. The electrode names are reordered to match the original figure: ```{r} pt26sozName <- rownames(pt26sz1Clipped)[rowData(pt26sz1Clipped)$soz] excludedElectrodes <- c("RTG29", "RTG30", "RTG31", "RTG32") pt26sozName <- pt26sozName[!pt26sozName %in% excludedElectrodes] pt26Display <- c( "ABT1", "ABT2", pt26sozName[1:16], excludedElectrodes, pt26sozName[17:18]) pt26sz1Reordered <- pt26sz1Clipped[pt26Display, ] visualSOZ(pt26sz1Reordered, pt26sozName) ``` ## Compute the Fragility Matrix The following code computes the fragility matrix using all electrodes and store the results in the Fragility class object pt01sz1Frag ```{r} library(doSNOW) # compute fragility cl <- makeCluster(parallel::detectCores(), type = "SOCK") registerDoSNOW(cl) windowNum <- 250 step <- 125 pt01sz1Frag <- calcAdjFrag(epoch = pt01sz1Clipped, window = windowNum, step = step, parallel = TRUE, nSearch=100L, progress = FALSE) pt26sz1Frag <- calcAdjFrag(epoch = pt26sz1Clipped, window = windowNum, step = step, parallel = TRUE, nSearch=100L, progress = FALSE) # Stop the parallel backend stopCluster(cl) ``` ## Fragility Heatmap The following function plots the fragility heatmap with the same display options as the previous voltage plot. Looking at both plots allows to check correlation between soz patterns ```{r} fragHeatmap <- function(frag, sozNames, ranked=FALSE) { startTimes <- frag$startTimes indexsz <- which(abs(startTimes)<=0.01) elecColor <- rep("black", length(frag$electrodes)) elecColor[frag$electrodes%in% sozNames] <- 'red' elecColor <- rev(elecColor) plotFragHeatmap(frag = frag, ranked=ranked) + geom_vline(xintercept = indexsz, color = "black", linetype = "dashed", linewidth = 1) + theme( axis.text.y = element_markdown(colour = elecColor) ) } ``` PT01 was a surgical success, with the high-fragility electrodes identified by the algorithm matching those identified by clinical epileptologists. ```{r} pt01sz1FragReordered <- pt01sz1Frag[pt01Display] fragHeatmap(pt01sz1FragReordered, pt01sozName, ranked=FALSE) ``` Setting the "ranked" variable to TRUE in the plotFragHeatmap allows more contrast and render the heatmap closer to original figure 4. ```{r} fragHeatmap(pt01sz1FragReordered, pt01sozName, ranked=TRUE) ``` PT26 was a surgical failure, and the high-fragility electrodes were not consistent with clinical EEG interpretation ```{r} pt26sz1FragReordered <- pt26sz1Frag[pt26Display] fragHeatmap(pt26sz1FragReordered, pt26sozName, ranked=FALSE) ``` Use the ranked option to get a more contrasted heatmap: ```{r} fragHeatmap(pt26sz1FragReordered, pt26sozName, ranked=TRUE) ``` ## Compute mean and standard deviation statistics for SOZ and non SOZ electrode group The following function allows to reproduce the mean and standard visualization statistics of two electrode groups (soz labeled electrodes and non soz labeled electrodes) as in extended figure 4 from the original paper. This plot shows that the fragility biomarker statistics are respectively significantly/not significantly higher in the soz labeled group correlated with the ground truth success/failure outcome for patient 01 and patient 26. ```{r} fragDist <- function(frag, sozNames) { timeWindows <- frag$startTimes timeIdx <- which(timeWindows >= -5 & timeWindows <= 10) frag <- frag[, timeIdx] plotFragDistribution(frag = frag, groupIndex = sozNames, bandType="SEM", rollingWindow = 1) + geom_vline(xintercept = 0, color = "black", linetype = "dashed", linewidth = 1) } ``` Patient 01 seizure 1 (p 1481 Extended Fig.4) ```{r} fragDist(pt01sz1Frag[pt01Display], pt01sozName) ``` Patient 26 seizure 1 (p 1481 Extended Fig.4) ```{r} fragDist(pt26sz1Frag[pt26Display], pt26sozName) ```