## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(EMOTIONS) ## ----eval=FALSE--------------------------------------------------------------- # devtools::install_github("https://github.com/pablobio/EMOTIONS") ## ----------------------------------------------------------------------------- library(EMOTIONS) ## ----------------------------------------------------------------------------- # Load the dummy dataset data("LacData") # Display the first rows head(LacData) ## ----warning=FALSE------------------------------------------------------------ # Running model fitting and ensemble modeling out.ensemble <- LacCurveFit( data = LacData, ID = "ID", trait = "DMY", dim = "DIM", alpha = 0.1, models = "All", param_list = NULL, silent=TRUE ) ## ----------------------------------------------------------------------------- head(out.ensemble$converged_models$ID2) ## ----------------------------------------------------------------------------- head(out.ensemble$models_weight$ID2) ## ----------------------------------------------------------------------------- head(out.ensemble$production$ID2) ## ----fig.width=7, fig.height=9------------------------------------------------ RidgeModels(out.ensemble, metric = "AIC_rank") ## ----fig.width=9, fig.height=9------------------------------------------------ ModelRankRange(out.ensemble, metric = "AIC_rank") ## ----fig.width=7, fig.height=8------------------------------------------------ PlotWeightLac( data = out.ensemble, ID = "ID2", trait = "DMY", metric = "weight_AIC", dim = "DIM", col = c("red", "blue") ) ## ----------------------------------------------------------------------------- data("models_EMOTIONS") head(models_EMOTIONS) ## ----warning=FALSE------------------------------------------------------------ out.ensemble.sub <- LacCurveFit( data = LacData, ID = "ID", trait = "DMY", dim = "DIM", alpha = 0.1, models = c("wil", "wilk", "wilycsml", "DiG", "DiGpw", "legpol3", "legpol4", "legpolWil", "cubsplin3", "cubsplin4", "cubsplin5", "cubsplindef", "wilminkPop", "qntReg"), param_list = NULL ) ## ----fig.width=7, fig.height=8------------------------------------------------ RidgeModels(out.ensemble.sub, metric = "AIC_rank") ## ----------------------------------------------------------------------------- data(model_pars) head(model_pars) ## ----warning=FALSE------------------------------------------------------------ edited_list <- list( MM = c(a = 20, b = -2), wil = c(a = 35, b = -5, c = -0.01, k = 0.2) ) out.ensemble.edited <- LacCurveFit( data = LacData, ID = "ID", trait = "DMY", dim = "DIM", alpha = 0.1, models = "All", param_list = edited_list ) ## ----------------------------------------------------------------------------- out.ensemble.edited$converged_models$ID2[["MM"]] out.ensemble.edited$converged_models$ID2[["wil"]] ## ----------------------------------------------------------------------------- out.res <- ResInd( out.ensemble$production, dim_filter_range = c(1, 7, 203, 210), outlier_sd_threshold = 4, weight = "weight_AIC", trait = "DMY", DIM = "DIM", ID_col = "ID" ) ## ----------------------------------------------------------------------------- head(out.res$ri_filtered) ## ----------------------------------------------------------------------------- out.res$ri_stats