EHRmuse: Multi-Cohort Selection Bias Correction using IPW and AIPW Methods

Comprehensive toolkit for addressing selection bias in binary disease models across diverse non-probability samples, each with unique selection mechanisms. It utilizes Inverse Probability Weighting (IPW) and Augmented Inverse Probability Weighting (AIPW) methods to reduce selection bias effectively in multiple non-probability cohorts by integrating data from either individual-level or summary-level external sources. The package also provides a variety of variance estimation techniques. Please refer to Kundu et al. <doi:10.48550/arXiv.2412.00228>.

Version: 0.0.2.0
Depends: R (≥ 4.0.0)
Imports: dplyr (≥ 1.0.0), magrittr, MASS, nleqslv (≥ 3.3.2), xgboost (≥ 1.4.1), survey (≥ 4.1.0), stats, nnet (≥ 7.3-17), simplexreg (≥ 0.1.6)
Published: 2025-01-20
DOI: 10.32614/CRAN.package.EHRmuse
Author: Ritoban Kundu [aut], Michael Kleinsasser [cre]
Maintainer: Michael Kleinsasser <biostat-cran-manager at umich.edu>
BugReports: https://github.com/Ritoban1/EHRmuse/issues
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://github.com/Ritoban1/EHRmuse
NeedsCompilation: no
CRAN checks: EHRmuse results

Documentation:

Reference manual: EHRmuse.pdf

Downloads:

Package source: EHRmuse_0.0.2.0.tar.gz
Windows binaries: r-devel: not available, r-release: EHRmuse_0.0.2.0.zip, r-oldrel: not available
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): not available, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=EHRmuse to link to this page.