Title: | Ensemble Learning Framework for Diagnostic and Prognostic Modeling |
Version: | 0.0.3 |
Description: | Provides a framework to build and evaluate diagnosis or prognosis models using stacking, voting, and bagging ensemble techniques with various base learners. The package also includes tools for visualization and interpretation of models. The development version of the package is available on 'GitHub' at https://github.com/xiaojie0519/E2E. The methods are based on the foundational work of Breiman (1996) <doi:10.1007/BF00058655> on bagging and Wolpert (1992) <doi:10.1016/S0893-6080(05)80023-1> on stacking. |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
URL: | https://xiaojie0519.github.io/E2E/ |
BugReports: | https://github.com/xiaojie0519/E2E/issues |
RoxygenNote: | 7.3.2 |
Imports: | caret, dplyr, gbm, ggplot2, glmnet, magrittr, MASS, patchwork, pROC, PRROC, randomForestSRC, readr, RSNNS, shapviz, survcomp, survival, survivalROC, survminer, timeROC, xgboost |
Suggests: | ada, doParallel, e1071, kernlab, klaR, knitr, nnet, randomForest, RColorBrewer, rmarkdown, rpart |
Depends: | R (≥ 3.5) |
LazyData: | true |
VignetteBuilder: | knitr |
Language: | en |
NeedsCompilation: | no |
Packaged: | 2025-08-21 03:11:50 UTC; Lenovo |
Author: | Shanjie Luan [aut, cre] |
Maintainer: | Shanjie Luan <Luan20050519@163.com> |
Repository: | CRAN |
Date/Publication: | 2025-08-26 19:30:14 UTC |
re-export Surv from survival
Description
re-export Surv from survival
Apply a Trained Diagnostic Model to New Data
Description
Applies a previously trained model (or ensemble) to a new, unseen dataset to generate predicted probabilities.
Usage
apply_dia(
trained_model_object,
new_data,
label_col_name = NULL,
pos_class,
neg_class
)
Arguments
trained_model_object |
A trained model object, as returned by |
new_data |
A data frame containing the new data for prediction. The first column must be the sample ID, subsequent columns are features. |
label_col_name |
A character string, the name of the column containing the class labels in the new data. This is optional and only used to include true labels in the output; it is not used for prediction. |
pos_class |
A character string, the label for the positive class (must match the label used during training). |
neg_class |
A character string, the label for the negative class (must match the label used during training). |
Value
A data frame with sample
(ID), label
(original numeric label from
new data, or NA if not provided), and score
(predicted probability for the positive class).
Examples
# 1. Assume 'train_dia' and 'test_dia' are loaded from your package
# data(train_dia)
# data(test_dia) # test_dia has same structure, maybe without the label column
initialize_modeling_system_dia()
# 2. Train a model
train_results <- models_dia(
data = train_dia, model = "lasso",
new_positive_label = "Case", new_negative_label = "Control"
)
trained_lasso_model <- train_results$lasso$model_object
# 3. Apply the trained model to new data
new_predictions <- apply_dia(
trained_model_object = trained_lasso_model,
new_data = test_dia,
label_col_name = "Disease_Status", # Optional
pos_class = "Case",
neg_class = "Control"
)
utils::head(new_predictions)
Apply a Trained Prognostic Model to New Data
Description
Applies a previously trained prognostic model (or ensemble) to a new, unseen dataset to generate prognostic scores.
Usage
apply_pro(trained_model_object, new_data, time_unit = "day")
Arguments
trained_model_object |
A trained model object, as returned by |
new_data |
A data frame containing the new data for prediction. It should follow the same structure as the training data: ID, Outcome, Time, Features. The outcome and time columns are used for data preparation and can be included in the output, but the model's prediction only uses the features. If outcome/time are unknown, they can be filled with NA. |
time_unit |
A character string, the unit of time in the third column of
|
Value
A data frame with ID
, outcome
, time
, and predicted score
for the new data.
See Also
Examples
# NOTE: This example requires 'train_pro' and 'test_pro' datasets.
if (requireNamespace("E2E", quietly = TRUE) &&
"train_pro" %in% utils::data(package = "E2E")$results[,3] &&
"test_pro" %in% utils::data(package = "E2E")$results[,3]) {
data(train_pro, package = "E2E")
data(test_pro, package = "E2E")
initialize_modeling_system_pro()
train_results <- models_pro(data = train_pro, model = "lasso_pro")
trained_lasso_model <- train_results$lasso_pro$model_object
# Apply the trained model to new data
new_data_predictions <- apply_pro(
trained_model_object = trained_lasso_model,
new_data = test_pro,
time_unit = "day" # Specify time unit of test_pro
)
utils::head(new_data_predictions)
}
Train a Bagging Diagnostic Model
Description
Implements a Bagging (Bootstrap Aggregating) ensemble for diagnostic models. It trains multiple base models on bootstrapped samples of the training data and aggregates their predictions by averaging probabilities.
Usage
bagging_dia(
data,
base_model_name,
n_estimators = 50,
subset_fraction = 0.632,
tune_base_model = FALSE,
threshold_strategy = "default",
specific_threshold_value = 0.5,
positive_label_value = 1,
negative_label_value = 0,
new_positive_label = "Positive",
new_negative_label = "Negative",
seed = 456
)
Arguments
data |
A data frame where the first column is the sample ID, the second is the outcome label, and subsequent columns are features. |
base_model_name |
A character string, the name of the base diagnostic model to use (e.g., "rf", "lasso"). This model must be registered. |
n_estimators |
An integer, the number of base models to train. |
subset_fraction |
A numeric value between 0 and 1, the fraction of samples to bootstrap for each base model. |
tune_base_model |
Logical, whether to enable tuning for each base model. |
threshold_strategy |
A character string (e.g., "f1", "youden", "default") or a numeric value (0-1) for determining the evaluation threshold for the ensemble. |
specific_threshold_value |
A numeric value between 0 and 1. Only used
if |
positive_label_value |
A numeric or character value in the raw data representing the positive class. |
negative_label_value |
A numeric or character value in the raw data representing the negative class. |
new_positive_label |
A character string, the desired factor level name for the positive class (e.g., "Positive"). |
new_negative_label |
A character string, the desired factor level name for the negative class (e.g., "Negative"). |
seed |
An integer, for reproducibility. |
Value
A list containing the model_object
, sample_score
, and evaluation_metrics
.
See Also
initialize_modeling_system_dia
, evaluate_model_dia
Examples
# This example assumes your package includes a dataset named 'train_dia'.
# If not, create a toy data frame first.
if (exists("train_dia")) {
initialize_modeling_system_dia()
bagging_rf_results <- bagging_dia(
data = train_dia,
base_model_name = "rf",
n_estimators = 5, # Reduced for a quick example
threshold_strategy = "youden",
positive_label_value = 1,
negative_label_value = 0,
new_positive_label = "Case",
new_negative_label = "Control"
)
print_model_summary_dia("Bagging (RF)", bagging_rf_results)
}
Train a Bagging Prognostic Model
Description
Implements a Bagging (Bootstrap Aggregating) ensemble for prognostic models. It trains multiple base models on bootstrapped samples of the training data and aggregates their predictions.
Usage
bagging_pro(
data,
base_model_name,
n_estimators = 10,
subset_fraction = 0.632,
tune_base_model = FALSE,
time_unit = "day",
years_to_evaluate = c(1, 3, 5),
seed = 456
)
Arguments
data |
A data frame for training. The first column must be the sample ID, the second column the event status (0/1), the third column the time, and subsequent columns the features. |
base_model_name |
A character string, the name of the base prognostic model to use (e.g., "lasso_pro", "rsf_pro"). This model must be registered. |
n_estimators |
An integer, the number of base models to train. |
subset_fraction |
A numeric value between 0 and 1, the fraction of samples to bootstrap for each base model. |
tune_base_model |
Logical, whether to enable tuning for each base model. |
time_unit |
A character string, the unit of time in the third column of |
years_to_evaluate |
A numeric vector of specific years at which to calculate time-dependent AUROC for evaluation. |
seed |
An integer, for reproducibility. |
Value
A list containing the model_object
, sample_score
, and evaluation_metrics
.
See Also
initialize_modeling_system_pro
, evaluate_model_pro
Examples
# NOTE: This example requires the 'train_pro' dataset.
if (requireNamespace("E2E", quietly = TRUE) &&
"train_pro" %in% utils::data(package = "E2E")$results[,3]) {
data(train_pro, package = "E2E")
initialize_modeling_system_pro()
bagging_lasso_results <- bagging_pro(
data = train_pro,
base_model_name = "lasso_pro",
n_estimators = 3, # Small number for example speed
subset_fraction = 0.8,
years_to_evaluate = c(1, 3)
)
print_model_summary_pro("Bagging (Lasso)", bagging_lasso_results)
}
Calculate Classification Metrics at a Specific Threshold
Description
Calculates various classification performance metrics (Accuracy, Precision, Recall, F1-score, Specificity, True Positives, etc.) for binary classification at a given probability threshold.
Usage
calculate_metrics_at_threshold_dia(
prob_positive,
y_true,
threshold,
pos_class,
neg_class
)
Arguments
prob_positive |
A numeric vector of predicted probabilities for the positive class. |
y_true |
A factor vector of true class labels. |
threshold |
A numeric value between 0 and 1, the probability threshold above which a prediction is considered positive. |
pos_class |
A character string, the label for the positive class. |
neg_class |
A character string, the label for the negative class. |
Value
A list containing:
-
Threshold
: The threshold used. -
Accuracy
: Overall prediction accuracy. -
Precision
: Precision for the positive class. -
Recall
: Recall (Sensitivity) for the positive class. -
F1
: F1-score for the positive class. -
Specificity
: Specificity for the negative class. -
TP
,TN
,FP
,FN
,N
: Counts of True Positives, True Negatives, False Positives, False Negatives, and total samples.
Examples
y_true_ex <- factor(c("Negative", "Positive", "Positive", "Negative", "Positive"),
levels = c("Negative", "Positive"))
prob_ex <- c(0.1, 0.8, 0.6, 0.3, 0.9)
metrics <- calculate_metrics_at_threshold_dia(
prob_positive = prob_ex,
y_true = y_true_ex,
threshold = 0.5,
pos_class = "Positive",
neg_class = "Negative"
)
print(metrics)
Train a Decision Tree Model for Classification
Description
Trains a single Decision Tree model using caret::train
(via rpart
method)
for binary classification.
Usage
dt_dia(X, y, tune = FALSE, cv_folds = 5)
Arguments
X |
A data frame of features. |
y |
A factor vector of class labels. |
tune |
Logical, whether to perform hyperparameter tuning for |
cv_folds |
An integer, the number of cross-validation folds for |
Value
A caret::train
object representing the trained Decision Tree model.
Examples
set.seed(42)
n_obs <- 50
X_toy <- data.frame(
FeatureA = rnorm(n_obs),
FeatureB = runif(n_obs, 0, 100)
)
y_toy <- factor(sample(c("Control", "Case"), n_obs, replace = TRUE),
levels = c("Control", "Case"))
# Train the model
dt_model <- dt_dia(X_toy, y_toy)
print(dt_model)
Train an Elastic Net (L1 and L2 Regularized Logistic Regression) Model for Classification
Description
Trains an Elastic Net-regularized logistic regression model
using caret::train
(via glmnet
method) for binary classification.
Usage
en_dia(X, y, tune = FALSE, cv_folds = 5)
Arguments
X |
A data frame of features. |
y |
A factor vector of class labels. |
tune |
Logical, whether to perform hyperparameter tuning for |
cv_folds |
An integer, the number of cross-validation folds for |
Value
A caret::train
object representing the trained Elastic Net model.
Examples
set.seed(42)
n_obs <- 50
X_toy <- data.frame(
FeatureA = rnorm(n_obs),
FeatureB = runif(n_obs, 0, 100)
)
y_toy <- factor(sample(c("Control", "Case"), n_obs, replace = TRUE),
levels = c("Control", "Case"))
# Train the model
en_model <- en_dia(X_toy, y_toy)
print(en_model)
Train an Elastic Net Cox Proportional Hazards Model
Description
Trains a Cox proportional hazards model with Elastic Net regularization
using glmnet
(with alpha = 0.5).
Usage
en_pro(X, y_surv, tune = FALSE)
Arguments
X |
A data frame of features. |
y_surv |
A |
tune |
Logical, whether to perform hyperparameter tuning (currently simplified/ignored
for direct |
Value
A list of class "train" containing the trained glmnet
model object,
names of features used in training, and model type. The returned object
also includes fitted_scores
(linear predictor), y_surv
, best_lambda
, and alpha_val
.
Examples
set.seed(42)
n_samples <- 50
n_features <- 10
X_data <- as.data.frame(matrix(rnorm(n_samples * n_features), ncol = n_features))
Y_surv_obj <- survival::Surv(
time = runif(n_samples, 100, 1000),
event = sample(0:1, n_samples, replace = TRUE)
)
# Train the model
en_model <- en_pro(X_data, Y_surv_obj)
print(en_model$finalModel)
Evaluate Diagnostic Model Performance
Description
Evaluates the performance of a trained diagnostic model using various metrics relevant to binary classification, including AUROC, AUPRC, and metrics at an optimal or specified probability threshold.
Usage
evaluate_model_dia(
model_obj = NULL,
X_data = NULL,
y_data,
sample_ids,
threshold_strategy = c("default", "f1", "youden", "numeric"),
specific_threshold_value = 0.5,
pos_class,
neg_class,
precomputed_prob = NULL,
y_original_numeric = NULL
)
Arguments
model_obj |
A trained model object (typically a |
X_data |
A data frame of features corresponding to the data used for evaluation.
Required if |
y_data |
A factor vector of true class labels for the evaluation data. |
sample_ids |
A vector of sample IDs for the evaluation data. |
threshold_strategy |
A character string, defining how to determine the
threshold for class-specific metrics: "default" (0.5), "f1" (maximizes F1-score),
"youden" (maximizes Youden's J statistic), or "numeric" (uses |
specific_threshold_value |
A numeric value between 0 and 1. Only used
if |
pos_class |
A character string, the label for the positive class. |
neg_class |
A character string, the label for the negative class. |
precomputed_prob |
Optional. A numeric vector of precomputed probabilities
for the positive class. If provided, |
y_original_numeric |
Optional. The original numeric/character vector of labels.
If not provided, it's inferred from |
Value
A list containing:
-
sample_score
: A data frame withsample
(ID),label
(original numeric), andscore
(predicted probability for positive class). -
evaluation_metrics
: A list of performance metrics:-
Threshold_Strategy
: The strategy used for threshold selection. -
_Threshold
: The chosen probability threshold. -
Accuracy
,Precision
,Recall
,F1
,Specificity
: Metrics calculated at_Threshold
. -
AUROC
: Area Under the Receiver Operating Characteristic curve. -
AUROC_95CI_Lower
,AUROC_95CI_Upper
: 95% confidence interval for AUROC. -
AUPRC
: Area Under the Precision-Recall curve.
-
Examples
set.seed(42)
n_obs <- 50
X_toy <- data.frame(
FeatureA = rnorm(n_obs),
FeatureB = runif(n_obs, 0, 100)
)
y_toy <- factor(sample(c("Control", "Case"), n_obs, replace = TRUE),
levels = c("Control", "Case"))
ids_toy <- paste0("Sample", 1:n_obs)
# 2. Train a model
rf_model <- rf_dia(X_toy, y_toy)
# 3. Evaluate the model using F1-score optimal threshold
eval_results <- evaluate_model_dia(
model_obj = rf_model,
X_data = X_toy,
y_data = y_toy,
sample_ids = ids_toy,
threshold_strategy = "f1",
pos_class = "Case",
neg_class = "Control"
)
str(eval_results)
Evaluate Prognostic Model Performance
Description
Evaluates the performance of a trained prognostic model using various metrics relevant to survival analysis, including C-index, time-dependent AUROC, and Kaplan-Meier (KM) group analysis (Hazard Ratio and p-value).
Usage
evaluate_model_pro(
trained_model_obj = NULL,
X_data = NULL,
Y_surv_obj,
sample_ids,
years_to_evaluate = c(1, 3, 5),
precomputed_score = NULL,
meta_normalize_params = NULL
)
Arguments
trained_model_obj |
A trained model object (of class "train" as returned
by model training functions like |
X_data |
A data frame of features corresponding to the data used for evaluation.
Required if |
Y_surv_obj |
A |
sample_ids |
A vector of sample IDs for the evaluation data. |
years_to_evaluate |
A numeric vector of specific years at which to calculate time-dependent AUROC. |
precomputed_score |
Optional. A numeric vector of precomputed prognostic
scores for the samples. If provided, |
meta_normalize_params |
Optional. A list of normalization parameters
(min/max values) used for base model scores in a stacking ensemble.
Used when |
Value
A list containing:
-
sample_score
: A data frame withID
,outcome
,time
, andscore
columns. -
evaluation_metrics
: A list of performance metrics:-
C_index
: Harrell's C-index. -
AUROC_Years
: A named list of time-dependent AUROC values for specified years. -
AUROC_Average
: The average of time-dependent AUROC values. -
KM_HR
: Hazard Ratio for High vs Low risk groups (split by median score). -
KM_P_value
: P-value for the KM group comparison. -
KM_Cutoff
: The score cutoff used to define High/Low risk groups (median score).
-
Examples
# Generate dummy data
set.seed(42)
n <- 50
X <- as.data.frame(matrix(rnorm(n * 5), n, 5))
Y_surv <- survival::Surv(time = runif(n, 1, 5*365), event = sample(0:1, n, TRUE))
ids <- paste0("s", 1:n)
# Train a simple model
initialize_modeling_system_pro()
model_obj <- lasso_pro(X, Y_surv)
# Evaluate the model on the same data
eval_results <- evaluate_model_pro(
trained_model_obj = model_obj,
X_data = X,
Y_surv_obj = Y_surv,
sample_ids = ids,
years_to_evaluate = c(1, 2, 3)
)
str(eval_results$evaluation_metrics)
Evaluate Prognostic Predictions
Description
A convenience wrapper to evaluate a data frame of prognostic predictions.
This function is ideal for evaluating the output of apply_pro
.
Usage
evaluate_predictions_pro(prediction_df, years_to_evaluate = c(1, 3, 5))
Arguments
prediction_df |
A data frame containing predictions. Must include columns
named |
years_to_evaluate |
A numeric vector of specific years at which to calculate time-dependent AUROC. |
Value
A list of evaluation metrics, including C-index, time-dependent AUROC, and Kaplan-Meier analysis results.
See Also
Examples
# Assume 'trained_model' and 'test_pro' data are available
if (requireNamespace("E2E", quietly = TRUE) &&
"train_pro" %in% utils::data(package = "E2E")$results[,3] &&
"test_pro" %in% utils::data(package = "E2E")$results[,3]) {
data(train_pro, package = "E2E")
data(test_pro, package = "E2E")
initialize_modeling_system_pro()
model_results <- models_pro(data = train_pro, model = "lasso_pro")
# 1. Get predictions on new data
predictions <- apply_pro(model_results$lasso_pro$model_object, test_pro)
# 2. Evaluate these predictions using the simplified function
evaluation_metrics <- evaluate_predictions_pro(predictions, years_to_evaluate = c(1, 3))
print(evaluation_metrics)
}
Plot Diagnostic Model Evaluation Figures
Description
Generates and returns a ggplot object for Receiver Operating Characteristic (ROC) curves, Precision-Recall (PRC) curves, or confusion matrices.
Usage
figure_dia(type, data, file = NULL)
Arguments
type |
String, specifies the type of plot to generate. Options are "roc", "prc", or "matrix". |
data |
A list object containing model evaluation results. It must include:
|
file |
Optional. A string specifying the path to save the plot (e.g.,
"plot.png"). If |
Value
A ggplot object. If the file
argument is provided, the plot is also
saved to the specified path.
Examples
# Create example data for a diagnostic model
external_eval_example_dia <- list(
sample_score = data.frame(
ID = paste0("S", 1:100),
label = sample(c(0, 1), 100, replace = TRUE),
score = runif(100, 0, 1)
),
evaluation_metrics = list(
Final_Threshold = 0.53
)
)
# Generate an ROC curve plot object
roc_plot <- figure_dia(type = "roc", data = external_eval_example_dia)
# To display the plot, simply run:
# print(roc_plot)
# Generate a PRC curve and save it to a temporary file
# tempfile() creates a safe, temporary path as required by CRAN
temp_prc_path <- tempfile(fileext = ".png")
figure_dia(type = "prc", data = external_eval_example_dia, file = temp_prc_path)
# Generate a Confusion Matrix plot
matrix_plot <- figure_dia(type = "matrix", data = external_eval_example_dia)
Plot Prognostic Model Evaluation Figures
Description
Generates and returns a ggplot object for Kaplan-Meier (KM) survival curves or time-dependent ROC curves.
Usage
figure_pro(type, data, file = NULL, time_unit = "days")
Arguments
type |
"km" or "tdroc" |
data |
list with:
|
file |
optional path to save |
time_unit |
"days" (default), "months", or "years" for df$time |
Value
ggplot object
Generate and Plot SHAP Explanation Figures
Description
Creates SHAP (SHapley Additive exPlanations) plots to explain feature contributions by training a surrogate model on the original model's scores.
Usage
figure_shap(data, raw_data, target_type, file = NULL, model_type = "xgboost")
Arguments
data |
A list containing |
raw_data |
A data frame with original features. The first column must be the sample ID. |
target_type |
String, the analysis type: "diagnosis" or "prognosis".
This determines which columns in |
file |
Optional. A string specifying the path to save the plot. If |
model_type |
String, the surrogate model for SHAP calculation. "xgboost" (default) or "lasso". |
Value
A patchwork object combining SHAP summary and importance plots. If file
is
provided, the plot is also saved.
Examples
# --- Example for a Diagnosis Model ---
set.seed(123)
train_dia_data <- data.frame(
SampleID = paste0("S", 1:100),
Label = sample(c(0, 1), 100, replace = TRUE),
FeatureA = rnorm(100, 10, 2),
FeatureB = runif(100, 0, 5)
)
model_results <- list(
sample_score = data.frame(ID = paste0("S", 1:100), score = runif(100, 0, 1))
)
# Generate SHAP plot object
shap_plot <- figure_shap(
data = model_results,
raw_data = train_dia_data,
target_type = "diagnosis",
model_type = "xgboost"
)
# To display the plot:
# print(shap_plot)
Find Optimal Probability Threshold
Description
Determines an optimal probability threshold for binary classification based on maximizing F1-score or Youden's J statistic.
Usage
find_optimal_threshold_dia(
prob_positive,
y_true,
type = c("f1", "youden"),
pos_class,
neg_class
)
Arguments
prob_positive |
A numeric vector of predicted probabilities for the positive class. |
y_true |
A factor vector of true class labels. |
type |
A character string, specifying the optimization criterion: "f1" for F1-score or "youden" for Youden's J statistic (Sensitivity + Specificity - 1). |
pos_class |
A character string, the label for the positive class. |
neg_class |
A character string, the label for the negative class. |
Value
A numeric value, the optimal probability threshold.
Examples
y_true_ex <- factor(c("Negative", "Positive", "Positive", "Negative", "Positive"),
levels = c("Negative", "Positive"))
prob_ex <- c(0.1, 0.8, 0.6, 0.3, 0.9)
# Find threshold maximizing F1-score
opt_f1_threshold <- find_optimal_threshold_dia(
prob_positive = prob_ex,
y_true = y_true_ex,
type = "f1",
pos_class = "Positive",
neg_class = "Negative"
)
print(opt_f1_threshold)
# Find threshold maximizing Youden's J
opt_youden_threshold <- find_optimal_threshold_dia(
prob_positive = prob_ex,
y_true = y_true_ex,
type = "youden",
pos_class = "Positive",
neg_class = "Negative"
)
print(opt_youden_threshold)
Train a Gradient Boosting Machine (GBM) Model for Classification
Description
Trains a Gradient Boosting Machine (GBM) model using caret::train
for binary classification.
Usage
gbm_dia(X, y, tune = FALSE, cv_folds = 5)
Arguments
X |
A data frame of features. |
y |
A factor vector of class labels. |
tune |
Logical, whether to perform hyperparameter tuning for |
cv_folds |
An integer, the number of cross-validation folds for |
Value
A caret::train
object representing the trained GBM model.
Examples
set.seed(42)
n_obs <- 200
X_toy <- data.frame(
FeatureA = rnorm(n_obs),
FeatureB = runif(n_obs, 0, 100)
)
y_toy <- factor(sample(c("Control", "Case"), n_obs, replace = TRUE),
levels = c("Control", "Case"))
# Train the model
gbm_model <- gbm_dia(X_toy, y_toy)
print(gbm_model)
Train a Gradient Boosting Machine (GBM) for Survival Data
Description
Trains a Gradient Boosting Machine (GBM) model with a Cox
proportional hazards loss function using gbm
.
Usage
gbm_pro(X, y_surv, tune = FALSE, cv.folds = 3)
Arguments
X |
A data frame of features. |
y_surv |
A |
tune |
Logical, whether to perform simplified hyperparameter tuning.
If |
cv.folds |
Integer. The number of cross-validation folds to use. Setting this to 0 or 1 will disable cross-validation. Defaults to 3. |
Value
A list of class "train" containing the trained gbm
model object,
names of features used in training, and model type. The returned object
also includes fitted_scores
(linear predictor), y_surv
, and best_iter
.
Examples
# Generate some dummy survival data
set.seed(42)
n_samples <- 200
n_features <- 5
X_data <- as.data.frame(matrix(rnorm(n_samples * n_features), ncol = n_features))
Y_surv_obj <- survival::Surv(
time = runif(n_samples, 100, 1000),
event = sample(0:1, n_samples, replace = TRUE)
)
# Train the model for the example *without* cross-validation to pass R CMD check
# In real use, you might use the default cv.folds = 3
gbm_model <- gbm_pro(X_data, Y_surv_obj, cv.folds = 0)
print(gbm_model$finalModel)
Get Registered Diagnostic Models
Description
Retrieves a list of all diagnostic model functions currently registered in the internal environment.
Usage
get_registered_models_dia()
Value
A named list where names are the registered model names and values are the corresponding model functions.
See Also
register_model_dia
, initialize_modeling_system_dia
Examples
# Ensure system is initialized to see the default models
initialize_modeling_system_dia()
models <- get_registered_models_dia()
# See available model names
print(names(models))
Get Registered Prognostic Models
Description
Retrieves a list of all prognostic model functions currently registered in the internal environment.
Usage
get_registered_models_pro()
Value
A named list where names are the registered model names and values are the corresponding model functions.
See Also
register_model_pro
, initialize_modeling_system_pro
Examples
# Get all currently registered models
initialize_modeling_system_pro() # Ensure system is initialized
models <- get_registered_models_pro()
names(models) # See available model names
Train an EasyEnsemble Model for Imbalanced Classification
Description
Implements the EasyEnsemble algorithm. It trains multiple base models on balanced subsets of the data (by undersampling the majority class) and aggregates their predictions.
Usage
imbalance_dia(
data,
base_model_name = "xb",
n_estimators = 10,
tune_base_model = FALSE,
threshold_choices = "default",
positive_label_value = 1,
negative_label_value = 0,
new_positive_label = "Positive",
new_negative_label = "Negative",
seed = 456
)
Arguments
data |
A data frame where the first column is the sample ID, the second is the outcome label, and subsequent columns are features. |
base_model_name |
A character string, the name of the base diagnostic model to use (e.g., "xb", "rf"). This model must be registered. |
n_estimators |
An integer, the number of base models to train (number of subsets). |
tune_base_model |
Logical, whether to enable tuning for each base model. |
threshold_choices |
A character string (e.g., "f1", "youden", "default") or a numeric value (0-1) for determining the evaluation threshold for the ensemble. |
positive_label_value |
A numeric or character value in the raw data representing the positive class. |
negative_label_value |
A numeric or character value in the raw data representing the negative class. |
new_positive_label |
A character string, the desired factor level name for the positive class (e.g., "Positive"). |
new_negative_label |
A character string, the desired factor level name for the negative class (e.g., "Negative"). |
seed |
An integer, for reproducibility. |
Value
A list containing the model_object
, sample_score
, and evaluation_metrics
.
See Also
initialize_modeling_system_dia
, evaluate_model_dia
Examples
# 1. Initialize the modeling system
initialize_modeling_system_dia()
# 2. Create an imbalanced toy dataset
set.seed(42)
n_obs <- 100
n_minority <- 10
data_imbalanced_toy <- data.frame(
ID = paste0("Sample", 1:n_obs),
Status = c(rep(1, n_minority), rep(0, n_obs - n_minority)),
Feat1 = rnorm(n_obs),
Feat2 = runif(n_obs)
)
# 3. Run the EasyEnsemble algorithm
# n_estimators is reduced for a quick example
easyensemble_results <- imbalance_dia(
data = data_imbalanced_toy,
base_model_name = "xb",
n_estimators = 3,
threshold_choices = "f1"
)
print_model_summary_dia("EasyEnsemble (XGBoost)", easyensemble_results)
Initialize Diagnostic Modeling System
Description
Initializes the diagnostic modeling system by loading required
packages and registering default diagnostic models (Random Forest, XGBoost,
SVM, MLP, Lasso, Elastic Net, Ridge, LDA, QDA, Naive Bayes, Decision Tree, GBM).
This function should be called once before using models_dia()
or ensemble methods.
Usage
initialize_modeling_system_dia()
Value
Invisible NULL. Initializes the internal model registry.
Examples
# Initialize the system (typically run once at the start of a session or script)
initialize_modeling_system_dia()
# Check if a default model like Random Forest is now registered
"rf" %in% names(get_registered_models_dia())
Initialize Prognostic Modeling System
Description
Initializes the prognostic modeling system by loading required
packages and registering default prognostic models (Lasso, Elastic Net, Ridge,
Random Survival Forest, Stepwise Cox, GBM for Cox). This function should
be called once before using run_models_pro()
or ensemble methods.
Usage
initialize_modeling_system_pro()
Value
Invisible NULL. Initializes the internal model registry.
Examples
# Initialize the system (typically run once at the start of a session or script)
initialize_modeling_system_pro()
# Check if models are now registered
print(names(get_registered_models_pro()))
Train a Lasso (L1 Regularized Logistic Regression) Model for Classification
Description
Trains a Lasso-regularized logistic regression model using caret::train
(via glmnet
method) for binary classification.
Usage
lasso_dia(X, y, tune = FALSE, cv_folds = 5)
Arguments
X |
A data frame of features. |
y |
A factor vector of class labels. |
tune |
Logical, whether to perform hyperparameter tuning for |
cv_folds |
An integer, the number of cross-validation folds for |
Value
A caret::train
object representing the trained Lasso model.
Examples
set.seed(42)
n_obs <- 50
X_toy <- data.frame(
FeatureA = rnorm(n_obs),
FeatureB = runif(n_obs, 0, 100)
)
y_toy <- factor(sample(c("Control", "Case"), n_obs, replace = TRUE),
levels = c("Control", "Case"))
# Train the model
lasso_model <- lasso_dia(X_toy, y_toy)
print(lasso_model)
Train a Lasso Cox Proportional Hazards Model
Description
Trains a Cox proportional hazards model with Lasso regularization
using glmnet
.
Usage
lasso_pro(X, y_surv, tune = FALSE)
Arguments
X |
A data frame of features. |
y_surv |
A |
tune |
Logical, whether to perform hyperparameter tuning (currently simplified/ignored
for direct |
Value
A list of class "train" containing the trained glmnet
model object,
names of features used in training, and model type. The returned object
also includes fitted_scores
(linear predictor) and y_surv
.
Examples
set.seed(42)
n_samples <- 50
n_features <- 10
X_data <- as.data.frame(matrix(rnorm(n_samples * n_features), ncol = n_features))
Y_surv_obj <- survival::Surv(
time = runif(n_samples, 100, 1000),
event = sample(0:1, n_samples, replace = TRUE)
)
# Train the model
lasso_model <- lasso_pro(X_data, Y_surv_obj)
print(lasso_model$finalModel)
Train a Linear Discriminant Analysis (LDA) Model for Classification
Description
Trains a Linear Discriminant Analysis (LDA) model using caret::train
for binary classification.
Usage
lda_dia(X, y, tune = FALSE, cv_folds = 5)
Arguments
X |
A data frame of features. |
y |
A factor vector of class labels. |
tune |
Logical, whether to perform hyperparameter tuning (currently ignored for LDA). |
cv_folds |
An integer, the number of cross-validation folds for |
Value
A caret::train
object representing the trained LDA model.
Examples
set.seed(42)
n_obs <- 50
X_toy <- data.frame(
FeatureA = rnorm(n_obs),
FeatureB = runif(n_obs, 0, 100)
)
y_toy <- factor(sample(c("Control", "Case"), n_obs, replace = TRUE),
levels = c("Control", "Case"))
# Train the model
lda_model <- lda_dia(X_toy, y_toy)
print(lda_model)
Load and Prepare Data for Diagnostic Models
Description
Loads a CSV file containing patient data, extracts features, and converts the label column into a factor suitable for classification models. Handles basic data cleaning like trimming whitespace and type conversion.
Usage
load_and_prepare_data_dia(
data_path,
label_col_name,
positive_label_value = 1,
negative_label_value = 0,
new_positive_label = "Positive",
new_negative_label = "Negative"
)
Arguments
data_path |
A character string, the file path to the input CSV data. The first column is assumed to be a sample ID. |
label_col_name |
A character string, the name of the column containing the class labels. |
positive_label_value |
A numeric or character value that represents the positive class in the raw data. |
negative_label_value |
A numeric or character value that represents the negative class in the raw data. |
new_positive_label |
A character string, the desired factor level name for the positive class (e.g., "Positive"). |
new_negative_label |
A character string, the desired factor level name for the negative class (e.g., "Negative"). |
Value
A list containing:
-
X
: A data frame of features (all columns except ID and label). -
y
: A factor vector of class labels, with levelsnew_negative_label
andnew_positive_label
. -
sample_ids
: A vector of sample IDs (the first column of the input data). -
pos_class_label
: The character string used for the positive class factor level. -
neg_class_label
: The character string used for the negative class factor level. -
y_original_numeric
: The original numeric/character vector of labels.
Examples
# Create a dummy CSV file in a temporary directory for demonstration
temp_csv_path <- tempfile(fileext = ".csv")
dummy_data <- data.frame(
ID = paste0("Patient", 1:50),
Disease_Status = sample(c(0, 1), 50, replace = TRUE),
FeatureA = rnorm(50),
FeatureB = runif(50, 0, 100),
CategoricalFeature = sample(c("X", "Y", "Z"), 50, replace = TRUE)
)
write.csv(dummy_data, temp_csv_path, row.names = FALSE)
# Load and prepare data from the temporary file
prepared_data <- load_and_prepare_data_dia(
data_path = temp_csv_path,
label_col_name = "Disease_Status",
positive_label_value = 1,
negative_label_value = 0,
new_positive_label = "Case",
new_negative_label = "Control"
)
# Check prepared data structure
str(prepared_data$X)
table(prepared_data$y)
# Clean up the dummy file
unlink(temp_csv_path)
Load and Prepare Data for Prognostic Models
Description
Loads a CSV file containing patient data, extracts features, outcome, and time columns, and prepares them into a format suitable for survival analysis models. Handles basic data cleaning like NA removal and column type conversion.
Usage
load_and_prepare_data_pro(
data_path,
outcome_col_name,
time_col_name,
time_unit = c("day", "month", "year")
)
Arguments
data_path |
A character string, the file path to the input CSV data. The first column is assumed to be a sample ID. |
outcome_col_name |
A character string, the name of the column containing event status (0 for censored, 1 for event). |
time_col_name |
A character string, the name of the column containing event or censoring time. |
time_unit |
A character string, the unit of time in |
Value
A list containing:
-
X
: A data frame of features (all columns except ID, outcome, and time). -
Y_surv
: Asurvival::Surv
object created from time and outcome. -
sample_ids
: A vector of sample IDs (the first column of the input data). -
outcome_numeric
: A numeric vector of outcome status. -
time_numeric
: A numeric vector of time, converted to days.
Examples
temp_csv_path <- tempfile(fileext = ".csv")
dummy_data <- data.frame(
ID = paste0("Patient", 1:50),
FeatureA = rnorm(50),
FeatureB = runif(50, 0, 100),
CategoricalFeature = sample(c("A", "B", "C"), 50, replace = TRUE),
Outcome_Status = sample(c(0, 1), 50, replace = TRUE),
Followup_Time_Months = runif(50, 10, 60)
)
write.csv(dummy_data, temp_csv_path, row.names = FALSE)
# Load and prepare data
prepared_data <- load_and_prepare_data_pro(
data_path = temp_csv_path,
outcome_col_name = "Outcome_Status",
time_col_name = "Followup_Time_Months",
time_unit = "month"
)
# Check prepared data structure
str(prepared_data$X)
print(prepared_data$Y_surv[1:5])
# Clean up dummy file
unlink(temp_csv_path)
Min-Max Normalization
Description
Normalizes a numeric vector to a range of 0 to 1 using min-max scaling.
Usage
min_max_normalize(x, min_val = NULL, max_val = NULL)
Arguments
x |
A numeric vector to be normalized. |
min_val |
Optional. The minimum value to use for normalization. If |
max_val |
Optional. The maximum value to use for normalization. If |
Value
A numeric vector with values scaled between 0 and 1. If min_val
and max_val
are equal (or x
has no variance), returns a vector of 0.5s.
Examples
# Normalize a vector
x_vec <- c(10, 20, 30, 40, 50)
normalized_x <- min_max_normalize(x_vec)
print(normalized_x) # Should be 0, 0.25, 0.5, 0.75, 1
# Normalize with custom min/max
custom_normalized_x <- min_max_normalize(x_vec, min_val = 0, max_val = 100)
print(custom_normalized_x) # Should be 0.1, 0.2, 0.3, 0.4, 0.5
Train a Multi-Layer Perceptron (Neural Network) Model for Classification
Description
Trains a Multi-Layer Perceptron (MLP) neural network model
using caret::train
for binary classification.
Usage
mlp_dia(X, y, tune = FALSE, cv_folds = 5)
Arguments
X |
A data frame of features. |
y |
A factor vector of class labels. |
tune |
Logical, whether to perform hyperparameter tuning using |
cv_folds |
An integer, the number of cross-validation folds for |
Value
A caret::train
object representing the trained MLP model.
Examples
set.seed(42)
n_obs <- 50
X_toy <- data.frame(
FeatureA = rnorm(n_obs),
FeatureB = runif(n_obs, 0, 100)
)
y_toy <- factor(sample(c("Control", "Case"), n_obs, replace = TRUE),
levels = c("Control", "Case"))
# Train the model
mlp_model <- mlp_dia(X_toy, y_toy)
print(mlp_model)
Run Multiple Diagnostic Models
Description
Trains and evaluates one or more registered diagnostic models on a given dataset.
Usage
models_dia(
data,
model = "all_dia",
tune = FALSE,
seed = 123,
threshold_choices = "default",
positive_label_value = 1,
negative_label_value = 0,
new_positive_label = "Positive",
new_negative_label = "Negative"
)
Arguments
data |
A data frame where the first column is the sample ID, the second is the outcome label, and subsequent columns are features. |
model |
A character string or vector of character strings, specifying which models to run. Use "all_dia" to run all registered models. |
tune |
Logical, whether to enable hyperparameter tuning for individual models. |
seed |
An integer, for reproducibility of random processes. |
threshold_choices |
A character string (e.g., "f1", "youden", "default") or a numeric value (0-1), or a named list/vector allowing different threshold strategies/values for each model. |
positive_label_value |
A numeric or character value in the raw data representing the positive class. |
negative_label_value |
A numeric or character value in the raw data representing the negative class. |
new_positive_label |
A character string, the desired factor level name for the positive class (e.g., "Positive"). |
new_negative_label |
A character string, the desired factor level name for the negative class (e.g., "Negative"). |
Value
A named list, where each element corresponds to a run model and
contains its trained model_object
, sample_score
data frame, and
evaluation_metrics
.
See Also
initialize_modeling_system_dia
, evaluate_model_dia
Examples
# This example assumes your package includes a dataset named 'train_dia'.
# If not, you should create a toy data frame similar to the one below.
#
# train_dia <- data.frame(
# ID = paste0("Patient", 1:100),
# Disease_Status = sample(c(0, 1), 100, replace = TRUE),
# FeatureA = rnorm(100),
# FeatureB = runif(100)
# )
# Ensure the 'train_dia' dataset is available in the environment
# For example, if it is exported by your package:
# data(train_dia)
# Check if 'train_dia' exists, otherwise skip the example
if (exists("train_dia")) {
# 1. Initialize the modeling system
initialize_modeling_system_dia()
# 2. Run selected models
results <- models_dia(
data = train_dia,
model = c("rf", "lasso"), # Run only Random Forest and Lasso
threshold_choices = list(rf = "f1", lasso = 0.6), # Different thresholds
positive_label_value = 1,
negative_label_value = 0,
new_positive_label = "Case",
new_negative_label = "Control",
seed = 42
)
# 3. Print summaries
for (model_name in names(results)) {
print_model_summary_dia(model_name, results[[model_name]])
}
}
Run Multiple Prognostic Models
Description
Trains and evaluates one or more registered prognostic models on a given dataset.
Usage
models_pro(
data,
model = "all_pro",
tune = FALSE,
seed = 123,
time_unit = "day",
years_to_evaluate = c(1, 3, 5)
)
Arguments
data |
A data frame for training. The first column must be the sample ID, the second column the event status (0/1), the third column the time, and subsequent columns the features. |
model |
A character string or vector of character strings, specifying which models to run. Use "all_pro" to run all registered models. |
tune |
Logical, whether to enable hyperparameter tuning for individual models. |
seed |
An integer, for reproducibility of random processes. |
time_unit |
A character string, the unit of time in the third column of |
years_to_evaluate |
A numeric vector of specific years at which to calculate time-dependent AUROC. |
Value
A named list, where each element corresponds to a run model and
contains its trained model_object
, sample_score
data frame, and
evaluation_metrics
.
See Also
initialize_modeling_system_pro
, evaluate_model_pro
Examples
# NOTE: This example requires the 'train_pro' dataset to be exported by the package.
# If it is not, replace `data(train_pro)` with code to create a dummy dataframe.
# For demonstration, we assume `train_pro` is available.
if (requireNamespace("E2E", quietly = TRUE) &&
"train_pro" %in% utils::data(package = "E2E")$results[,3]) {
data(train_pro, package = "E2E")
# Initialize the modeling system
initialize_modeling_system_pro()
# Run selected models
results <- models_pro(
data = train_pro,
model = c("lasso_pro", "rsf_pro"), # Run only Lasso and RSF
years_to_evaluate = c(1, 3, 5),
seed = 42
)
# Print summaries
for (model_name in names(results)) {
print_model_summary_pro(model_name, results[[model_name]])
}
}
Train a Naive Bayes Model for Classification
Description
Trains a Naive Bayes model using caret::train
for binary classification.
Usage
nb_dia(X, y, tune = FALSE, cv_folds = 5)
Arguments
X |
A data frame of features. |
y |
A factor vector of class labels. |
tune |
Logical, whether to perform hyperparameter tuning using |
cv_folds |
An integer, the number of cross-validation folds for |
Value
A caret::train
object representing the trained Naive Bayes model.
Examples
set.seed(42)
n_obs <- 50
X_toy <- data.frame(
FeatureA = rnorm(n_obs),
FeatureB = runif(n_obs, 0, 100)
)
y_toy <- factor(sample(c("Control", "Case"), n_obs, replace = TRUE),
levels = c("Control", "Case"))
# Train the model
nb_model <- nb_dia(X_toy, y_toy)
print(nb_model)
Print Diagnostic Model Summary
Description
Prints a formatted summary of the evaluation metrics for a diagnostic model, either from training data or new data evaluation.
Usage
print_model_summary_dia(model_name, results_list, on_new_data = FALSE)
Arguments
model_name |
A character string, the name of the model (e.g., "rf", "Bagging (RF)"). |
results_list |
A list containing model evaluation results, typically
an element from the output of |
on_new_data |
Logical, indicating whether the results are from applying
the model to new, unseen data ( |
Value
NULL. Prints the summary to the console.
Examples
# Example for a successfully evaluated model
successful_results <- list(
evaluation_metrics = list(
Threshold_Strategy = "f1",
`_Threshold` = 0.45,
AUROC = 0.85, AUROC_95CI_Lower = 0.75, AUROC_95CI_Upper = 0.95,
AUPRC = 0.80, Accuracy = 0.82, F1 = 0.78,
Precision = 0.79, Recall = 0.77, Specificity = 0.85
)
)
print_model_summary_dia("MyAwesomeModel", successful_results)
# Example for a failed model
failed_results <- list(evaluation_metrics = list(error = "Training failed"))
print_model_summary_dia("MyFailedModel", failed_results)
Print Prognostic Model Summary
Description
Prints a formatted summary of the evaluation metrics for a prognostic model, either from training data or new data evaluation.
Usage
print_model_summary_pro(model_name, results_list, on_new_data = FALSE)
Arguments
model_name |
A character string, the name of the model (e.g., "lasso_pro"). |
results_list |
A list containing model evaluation results, typically
an element from the output of |
on_new_data |
Logical, indicating whether the results are from applying
the model to new, unseen data ( |
Value
NULL. Prints the summary to the console.
Examples
if (requireNamespace("E2E", quietly = TRUE) &&
"train_pro" %in% utils::data(package = "E2E")$results[,3]) {
data(train_pro, package = "E2E")
initialize_modeling_system_pro()
results <- models_pro(data = train_pro, model = "lasso_pro")
# Print summary for the trained model
print_model_summary_pro("lasso_pro", results$lasso_pro, on_new_data = FALSE)
# Example for a failed model
failed_results <- list(evaluation_metrics = list(error = "Training failed"))
print_model_summary_pro("MyFailedModel", failed_results)
}
Train a Quadratic Discriminant Analysis (QDA) Model for Classification
Description
Trains a Quadratic Discriminant Analysis (QDA) model using caret::train
for binary classification.
Usage
qda_dia(X, y, tune = FALSE, cv_folds = 5)
Arguments
X |
A data frame of features. |
y |
A factor vector of class labels. |
tune |
Logical, whether to perform hyperparameter tuning (currently ignored for QDA). |
cv_folds |
An integer, the number of cross-validation folds for |
Value
A caret::train
object representing the trained QDA model.
Examples
set.seed(42)
n_obs <- 50
X_toy <- data.frame(
FeatureA = rnorm(n_obs),
FeatureB = runif(n_obs, 0, 100)
)
y_toy <- factor(sample(c("Control", "Case"), n_obs, replace = TRUE),
levels = c("Control", "Case"))
# Train the model
qda_model <- qda_dia(X_toy, y_toy)
print(qda_model)
Register a Diagnostic Model Function
Description
Registers a user-defined or pre-defined diagnostic model function with the internal model registry. This allows the function to be called later by its registered name, facilitating a modular model management system.
Usage
register_model_dia(name, func)
Arguments
name |
A character string, the unique name to register the model under. |
func |
A function, the R function implementing the diagnostic model.
This function should typically accept |
Value
NULL. The function registers the model function invisibly.
See Also
get_registered_models_dia
, initialize_modeling_system_dia
Examples
# Example of a dummy model function for registration
my_dummy_rf_model <- function(X, y, tune = FALSE, cv_folds = 5) {
message("Training dummy RF model...")
# This is a placeholder and doesn't train a real model.
# It returns a list with a structure similar to a caret train object.
list(method = "dummy_rf")
}
# Initialize the system before registering
initialize_modeling_system_dia()
# Register the new model
register_model_dia("dummy_rf", my_dummy_rf_model)
# Verify that the model is now in the list of registered models
"dummy_rf" %in% names(get_registered_models_dia())
Register a Prognostic Model Function
Description
Registers a user-defined or pre-defined prognostic model function with the internal model registry. This allows the function to be called later by its registered name, facilitating a modular model management system.
Usage
register_model_pro(name, func)
Arguments
name |
A character string, the unique name to register the model under. |
func |
A function, the R function implementing the prognostic model.
This function should typically accept |
Value
NULL. The function registers the model function invisibly.
See Also
get_registered_models_pro
, initialize_modeling_system_pro
Examples
# Example of a dummy model function for registration
my_dummy_cox_model <- function(X, y_surv, tune = FALSE) {
# A minimal survival model for demonstration
model_fit <- survival::coxph(y_surv ~ ., data = X)
structure(list(finalModel = model_fit, X_train_cols = colnames(X),
model_type = "survival_dummy_cox"), class = "train")
}
# Register the dummy model
initialize_modeling_system_pro() # Ensure system is initialized
register_model_pro("dummy_cox", my_dummy_cox_model)
"dummy_cox" %in% names(get_registered_models_pro()) # Check if registered
Train a Random Forest Model for Classification
Description
Trains a Random Forest model using caret::train
for binary classification.
Usage
rf_dia(X, y, tune = FALSE, cv_folds = 5)
Arguments
X |
A data frame of features. |
y |
A factor vector of class labels. |
tune |
Logical, whether to perform hyperparameter tuning using |
cv_folds |
An integer, the number of cross-validation folds for |
Value
A caret::train
object representing the trained Random Forest model.
Examples
set.seed(42)
n_obs <- 50
X_toy <- data.frame(
FeatureA = rnorm(n_obs),
FeatureB = runif(n_obs, 0, 100)
)
y_toy <- factor(sample(c("Control", "Case"), n_obs, replace = TRUE),
levels = c("Control", "Case"))
# Train the model
rf_model <- rf_dia(X_toy, y_toy)
print(rf_model)
Train a Ridge (L2 Regularized Logistic Regression) Model for Classification
Description
Trains a Ridge-regularized logistic regression model using caret::train
(via glmnet
method) for binary classification.
Usage
ridge_dia(X, y, tune = FALSE, cv_folds = 5)
Arguments
X |
A data frame of features. |
y |
A factor vector of class labels. |
tune |
Logical, whether to perform hyperparameter tuning for |
cv_folds |
An integer, the number of cross-validation folds for |
Value
A caret::train
object representing the trained Ridge model.
Examples
set.seed(42)
n_obs <- 50
X_toy <- data.frame(
FeatureA = rnorm(n_obs),
FeatureB = runif(n_obs, 0, 100)
)
y_toy <- factor(sample(c("Control", "Case"), n_obs, replace = TRUE),
levels = c("Control", "Case"))
# Train the model
ridge_model <- ridge_dia(X_toy, y_toy)
print(ridge_model)
Train a Ridge Cox Proportional Hazards Model
Description
Trains a Cox proportional hazards model with Ridge regularization
using glmnet
.
Usage
ridge_pro(X, y_surv, tune = FALSE)
Arguments
X |
A data frame of features. |
y_surv |
A |
tune |
Logical, whether to perform hyperparameter tuning (currently simplified/ignored
for direct |
Value
A list of class "train" containing the trained glmnet
model object,
names of features used in training, and model type. The returned object
also includes fitted_scores
(linear predictor), y_surv
, and best_lambda
.
Examples
set.seed(42)
n_samples <- 50
n_features <- 10
X_data <- as.data.frame(matrix(rnorm(n_samples * n_features), ncol = n_features))
Y_surv_obj <- survival::Surv(
time = runif(n_samples, 100, 1000),
event = sample(0:1, n_samples, replace = TRUE)
)
# Train the model
ridge_model <- ridge_pro(X_data, Y_surv_obj)
print(ridge_model$finalModel)
Train a Random Survival Forest Model
Description
Trains a Random Survival Forest (RSF) model using randomForestSRC
.
Usage
rsf_pro(X, y_surv, tune = FALSE)
Arguments
X |
A data frame of features. |
y_surv |
A |
tune |
Logical, whether to perform hyperparameter tuning (a simplified
message is currently provided, full tuning with |
Value
A list of class "train" containing the trained rfsrc
model object,
names of features used in training, and model type. The returned object
also includes fitted_scores
and y_surv
.
Examples
# Generate some dummy survival data
set.seed(42)
n_samples <- 50
n_features <- 5
X_data <- as.data.frame(matrix(rnorm(n_samples * n_features), ncol = n_features))
Y_surv_obj <- survival::Surv(
time = runif(n_samples, 100, 1000),
event = sample(0:1, n_samples, replace = TRUE)
)
# Train the model (ntree is small for a quick example)
rsf_model <- rsf_pro(X_data, Y_surv_obj)
print(rsf_model$finalModel)
Train a Stacking Diagnostic Model
Description
Implements a Stacking ensemble. It trains multiple base models, then uses their predictions as features to train a meta-model.
Usage
stacking_dia(
results_all_models,
data,
meta_model_name,
top = 5,
tune_meta = FALSE,
threshold_choices = "f1",
seed = 789,
positive_label_value = 1,
negative_label_value = 0,
new_positive_label = "Positive",
new_negative_label = "Negative"
)
Arguments
results_all_models |
A list of results from |
data |
A data frame where the first column is the sample ID, the second is the outcome label, and subsequent columns are features. Used for training the meta-model. |
meta_model_name |
A character string, the name of the meta-model to use (e.g., "lasso", "gbm"). This model must be registered. |
top |
An integer, the number of top-performing base models (ranked by AUROC) to select for the stacking ensemble. |
tune_meta |
Logical, whether to enable tuning for the meta-model. |
threshold_choices |
A character string (e.g., "f1", "youden", "default") or a numeric value (0-1) for determining the evaluation threshold for the ensemble. |
seed |
An integer, for reproducibility. |
positive_label_value |
A numeric or character value in the raw data representing the positive class. |
negative_label_value |
A numeric or character value in the raw data representing the negative class. |
new_positive_label |
A character string, the desired factor level name for the positive class (e.g., "Positive"). |
new_negative_label |
A character string, the desired factor level name for the negative class (e.g., "Negative"). |
Value
A list containing the model_object
, sample_score
, and evaluation_metrics
.
See Also
models_dia
, evaluate_model_dia
Examples
# 1. Initialize the modeling system
initialize_modeling_system_dia()
# 2. Create a toy dataset for demonstration
set.seed(42)
data_toy <- data.frame(
ID = paste0("Sample", 1:60),
Status = sample(c(0, 1), 60, replace = TRUE),
Feat1 = rnorm(60),
Feat2 = runif(60)
)
# 3. Generate mock base model results (as if from models_dia)
# In a real scenario, you would run models_dia() on your full dataset
base_model_results <- models_dia(
data = data_toy,
model = c("rf", "lasso"),
seed = 123
)
# 4. Run the stacking ensemble
stacking_results <- stacking_dia(
results_all_models = base_model_results,
data = data_toy,
meta_model_name = "gbm",
top = 2,
threshold_choices = "f1"
)
print_model_summary_dia("Stacking (GBM)", stacking_results)
Train a Stacking Prognostic Model
Description
Implements a Stacking ensemble for prognostic models. It trains multiple base models and uses their predictions to train a meta-model.
Usage
stacking_pro(
results_all_models,
data,
meta_model_name,
top = 3,
tune_meta = FALSE,
time_unit = "day",
years_to_evaluate = c(1, 3, 5),
seed = 789
)
Arguments
results_all_models |
A list of results from |
data |
A data frame for training the meta-model. The first column must be ID, second event status (0/1), third time, and subsequent columns features. |
meta_model_name |
A character string, the name of the meta-model to use (e.g., "lasso_pro", "gbm_pro"). This model must be registered. |
top |
An integer, the number of top-performing base models (ranked by C-index) to select for the stacking ensemble. |
tune_meta |
Logical, whether to enable tuning for the meta-model. |
time_unit |
A character string, the unit of time in the third column of |
years_to_evaluate |
A numeric vector of specific years at which to calculate time-dependent AUROC for evaluation. |
seed |
An integer, for reproducibility. |
Value
A list containing the model_object
, sample_score
, and evaluation_metrics
.
See Also
models_pro
, evaluate_model_pro
Examples
# NOTE: This example requires the 'train_pro' dataset.
if (requireNamespace("E2E", quietly = TRUE) &&
"train_pro" %in% utils::data(package = "E2E")$results[,3]) {
data(train_pro, package = "E2E")
initialize_modeling_system_pro()
# First, generate results for base models
base_model_results <- models_pro(data = train_pro, model = c("lasso_pro", "rsf_pro"))
# Then, create the stacking ensemble
stacking_lasso_results <- stacking_pro(
results_all_models = base_model_results,
data = train_pro,
meta_model_name = "lasso_pro",
top = 3,
years_to_evaluate = c(1, 3)
)
print_model_summary_pro("Stacking (Lasso)", stacking_lasso_results)
}
Train a Stepwise Cox Proportional Hazards Model
Description
Trains a Cox proportional hazards model and performs backward
stepwise selection using MASS::stepAIC
to select important features.
Usage
stepcox_pro(X, y_surv, tune = FALSE)
Arguments
X |
A data frame of features. |
y_surv |
A |
tune |
Logical, whether to perform hyperparameter tuning (currently ignored). |
Value
A list of class "train" containing the trained coxph
model object
after stepwise selection, names of features used in training, and model type.
The returned object also includes fitted_scores
(linear predictor) and y_surv
.
Examples
set.seed(42)
n_samples <- 50
n_features <- 5
X_data <- as.data.frame(matrix(rnorm(n_samples * n_features), ncol = n_features))
Y_surv_obj <- survival::Surv(
time = runif(n_samples, 100, 1000),
event = sample(0:1, n_samples, replace = TRUE)
)
# Train the model
stepcox_model <- stepcox_pro(X_data, Y_surv_obj)
print(stepcox_model$finalModel)
Train a Support Vector Machine (Linear Kernel) Model for Classification
Description
Trains a Support Vector Machine (SVM) model with a linear kernel
using caret::train
for binary classification.
Usage
svm_dia(X, y, tune = FALSE, cv_folds = 5)
Arguments
X |
A data frame of features. |
y |
A factor vector of class labels. |
tune |
Logical, whether to perform hyperparameter tuning using |
cv_folds |
An integer, the number of cross-validation folds for |
Value
A caret::train
object representing the trained SVM model.
Examples
set.seed(42)
n_obs <- 50
X_toy <- data.frame(
FeatureA = rnorm(n_obs),
FeatureB = runif(n_obs, 0, 100)
)
y_toy <- factor(sample(c("Control", "Case"), n_obs, replace = TRUE),
levels = c("Control", "Case"))
# Train the model
svm_model <- svm_dia(X_toy, y_toy)
print(svm_model)
Test Data for Diagnostic Models
Description
A test dataset for evaluating diagnostic models, with a structure
identical to train_dia
.
Usage
test_dia
Format
A data frame with rows for samples and 22 columns:
- sample
character. Unique identifier for each sample.
- outcome
integer. The binary outcome (0 or 1).
- AC004637.1
numeric. Gene expression level.
- AC008459.1
numeric. Gene expression level.
- AC009242.1
numeric. Gene expression level.
- AC016735.1
numeric. Gene expression level.
- AC090125.1
numeric. Gene expression level.
- AC104237.3
numeric. Gene expression level.
- AC112721.2
numeric. Gene expression level.
- AC246817.1
numeric. Gene expression level.
- AL135841.1
numeric. Gene expression level.
- AL139241.1
numeric. Gene expression level.
- HYMAI
numeric. Gene expression level.
- KCNIP2.AS1
numeric. Gene expression level.
- LINC00639
numeric. Gene expression level.
- LINC00922
numeric. Gene expression level.
- LINC00924
numeric. Gene expression level.
- LINC00958
numeric. Gene expression level.
- LINC01028
numeric. Gene expression level.
- LINC01614
numeric. Gene expression level.
- LINC01644
numeric. Gene expression level.
- PRDM16.DT
numeric. Gene expression level.
Source
Stored in data/test_dia.rda
.
Test Data for Prognostic (Survival) Models
Description
A test dataset for evaluating prognostic models, with a structure
identical to train_pro
.
Usage
test_pro
Format
A data frame with rows for samples and 31 columns:
- sample
character. Unique identifier for each sample.
- outcome
integer. The event status (0 or 1).
- time
numeric. The time to event or censoring.
- AC004990.1
numeric. Gene expression level.
- AC055854.1
numeric. Gene expression level.
- AC084212.1
numeric. Gene expression level.
- AC092118.1
numeric. Gene expression level.
- AC093515.1
numeric. Gene expression level.
- AC104211.1
numeric. Gene expression level.
- AC105046.1
numeric. Gene expression level.
- AC105219.1
numeric. Gene expression level.
- AC110772.2
numeric. Gene expression level.
- AC133644.1
numeric. Gene expression level.
- AL133467.1
numeric. Gene expression level.
- AL391845.2
numeric. Gene expression level.
- AL590434.1
numeric. Gene expression level.
- AL603840.1
numeric. Gene expression level.
- AP000851.2
numeric. Gene expression level.
- AP001434.1
numeric. Gene expression level.
- C9orf163
numeric. Gene expression level.
- FAM153CP
numeric. Gene expression level.
- HOTAIR
numeric. Gene expression level.
- HYMAI
numeric. Gene expression level.
- LINC00165
numeric. Gene expression level.
- LINC01028
numeric. Gene expression level.
- LINC01152
numeric. Gene expression level.
- LINC01497
numeric. Gene expression level.
- LINC01614
numeric. Gene expression level.
- LINC01929
numeric. Gene expression level.
- LINC02408
numeric. Gene expression level.
- SIRLNT
numeric. Gene expression level.
Source
Stored in data/test_pro.rda
.
Training Data for Diagnostic Models
Description
A training dataset for diagnostic models, containing sample IDs, binary outcomes, and gene expression features.
Usage
train_dia
Format
A data frame with rows for samples and 22 columns:
- sample
character. Unique identifier for each sample.
- outcome
integer. The binary outcome, where 1 typically represents a positive case and 0 a negative case.
- AC004637.1
numeric. Gene expression level.
- AC008459.1
numeric. Gene expression level.
- AC009242.1
numeric. Gene expression level.
- AC016735.1
numeric. Gene expression level.
- AC090125.1
numeric. Gene expression level.
- AC104237.3
numeric. Gene expression level.
- AC112721.2
numeric. Gene expression level.
- AC246817.1
numeric. Gene expression level.
- AL135841.1
numeric. Gene expression level.
- AL139241.1
numeric. Gene expression level.
- HYMAI
numeric. Gene expression level.
- KCNIP2.AS1
numeric. Gene expression level.
- LINC00639
numeric. Gene expression level.
- LINC00922
numeric. Gene expression level.
- LINC00924
numeric. Gene expression level.
- LINC00958
numeric. Gene expression level.
- LINC01028
numeric. Gene expression level.
- LINC01614
numeric. Gene expression level.
- LINC01644
numeric. Gene expression level.
- PRDM16.DT
numeric. Gene expression level.
Details
This dataset is used to train machine learning models for diagnosis. The column names starting with 'AC', 'AL', 'LINC', etc., are feature variables.
Source
Stored in data/train_dia.rda
.
Training Data for Prognostic (Survival) Models
Description
A training dataset for prognostic models, containing sample IDs, survival outcomes (time and event status), and gene expression features.
Usage
train_pro
Format
A data frame with rows for samples and 31 columns:
- sample
character. Unique identifier for each sample.
- outcome
integer. The event status, where 1 indicates an event occurred and 0 indicates censoring.
- time
numeric. The time to event or censoring.
- AC004990.1
numeric. Gene expression level.
- AC055854.1
numeric. Gene expression level.
- AC084212.1
numeric. Gene expression level.
- AC092118.1
numeric. Gene expression level.
- AC093515.1
numeric. Gene expression level.
- AC104211.1
numeric. Gene expression level.
- AC105046.1
numeric. Gene expression level.
- AC105219.1
numeric. Gene expression level.
- AC110772.2
numeric. Gene expression level.
- AC133644.1
numeric. Gene expression level.
- AL133467.1
numeric. Gene expression level.
- AL391845.2
numeric. Gene expression level.
- AL590434.1
numeric. Gene expression level.
- AL603840.1
numeric. Gene expression level.
- AP000851.2
numeric. Gene expression level.
- AP001434.1
numeric. Gene expression level.
- C9orf163
numeric. Gene expression level.
- FAM153CP
numeric. Gene expression level.
- HOTAIR
numeric. Gene expression level.
- HYMAI
numeric. Gene expression level.
- LINC00165
numeric. Gene expression level.
- LINC01028
numeric. Gene expression level.
- LINC01152
numeric. Gene expression level.
- LINC01497
numeric. Gene expression level.
- LINC01614
numeric. Gene expression level.
- LINC01929
numeric. Gene expression level.
- LINC02408
numeric. Gene expression level.
- SIRLNT
numeric. Gene expression level.
Details
This dataset is used to train machine learning models for prognosis. The features are typically gene expression values.
Source
Stored in data/train_pro.rda
.
Train a Voting Ensemble Diagnostic Model
Description
Implements a Voting ensemble, combining predictions from multiple base models through soft or hard voting.
Usage
voting_dia(
results_all_models,
data,
type = c("soft", "hard"),
weight_metric = "AUROC",
top = 5,
seed = 789,
threshold_choices = "f1",
positive_label_value = 1,
negative_label_value = 0,
new_positive_label = "Positive",
new_negative_label = "Negative"
)
Arguments
results_all_models |
A list of results from |
data |
A data frame where the first column is the sample ID, the second is the outcome label, and subsequent columns are features. Used for evaluation. |
type |
A character string, "soft" for weighted average of probabilities or "hard" for majority class voting. |
weight_metric |
A character string, the metric to use for weighting base models in soft voting (e.g., "AUROC", "F1"). Ignored for hard voting. |
top |
An integer, the number of top-performing base models (ranked by
|
seed |
An integer, for reproducibility. |
threshold_choices |
A character string (e.g., "f1", "youden", "default") or a numeric value (0-1) for determining the evaluation threshold for the ensemble. |
positive_label_value |
A numeric or character value in the raw data representing the positive class. |
negative_label_value |
A numeric or character value in the raw data representing the negative class. |
new_positive_label |
A character string, the desired factor level name for the positive class (e.g., "Positive"). |
new_negative_label |
A character string, the desired factor level name for the negative class (e.g., "Negative"). |
Value
A list containing the model_object
, sample_score
, and evaluation_metrics
.
See Also
models_dia
, evaluate_model_dia
Examples
# 1. Initialize the modeling system
initialize_modeling_system_dia()
# 2. Create a toy dataset for demonstration
set.seed(42)
data_toy <- data.frame(
ID = paste0("Sample", 1:60),
Status = sample(c(0, 1), 60, replace = TRUE),
Feat1 = rnorm(60),
Feat2 = runif(60)
)
# 3. Generate mock base model results (as if from models_dia)
base_model_results <- models_dia(
data = data_toy,
model = c("rf", "lasso"),
seed = 123
)
# 4. Run the soft voting ensemble
soft_voting_results <- voting_dia(
results_all_models = base_model_results,
data = data_toy,
type = "soft",
weight_metric = "AUROC",
top = 2,
threshold_choices = "f1"
)
print_model_summary_dia("Soft Voting", soft_voting_results)
Train an XGBoost Tree Model for Classification
Description
Trains an Extreme Gradient Boosting (XGBoost) model using caret::train
for binary classification.
Usage
xb_dia(X, y, tune = FALSE, cv_folds = 5)
Arguments
X |
A data frame of features. |
y |
A factor vector of class labels. |
tune |
Logical, whether to perform hyperparameter tuning using |
cv_folds |
An integer, the number of cross-validation folds for |
Value
A caret::train
object representing the trained XGBoost model.
Examples
set.seed(42)
n_obs <- 50
X_toy <- data.frame(
FeatureA = rnorm(n_obs),
FeatureB = runif(n_obs, 0, 100)
)
y_toy <- factor(sample(c("Control", "Case"), n_obs, replace = TRUE),
levels = c("Control", "Case"))
# Train the model
xb_model <- xb_dia(X_toy, y_toy)
print(xb_model)