
Comparing the performance of computation methods
an example with package Countr and the fertility data

Tarak Kharrat1 and Georgi N. Boshnakov2

1Salford Business School, University of Salford, UK.
2School of Mathematics, University of Manchester, UK.

Abstract

This short document compares the performance of the different algorithms implemented
in Countr to fit renewal-count models. The computation described here is based on the
fertility data shipped with the package and the weibull-count model which allows using
series based methods on top of the other convolution methods. More details about the
different computation methods can be found in Baker and Kharrat (2017).

This vignette is part of package Countr (see Kharrat et al., 2019).

1 Prerequisites
We will do the analysis of the data with package Countr, so we load it:

library(Countr)

Package rebenchmark (Kusnierczyk, 2012) will also be used here to facilitate performance
computation

library(rbenchmark)

2 Comparing performance of different methods
The data used here is the fertility data shipped with the package and described in length in
Winkelmann (1995).

The execution time depends obviously on the machine used but the relative order should
remain the same regardless of the characteristic of your machine. The benchmark() routine from
the rbenchmark package Kusnierczyk (2012) will be used to compare the different computation
methods discussed in Baker and Kharrat (2017). We selected the parameters for every method
such as we achieve an error or at least 10−8. The code below reproduces the results reported in
Baker and Kharrat (2017, Table 2). As a benchmark, we use an adaptation of the original code
gently provided by Blake McShane (McShane et al., 2008). The McShane’s code is implemented
in a separate file and is not shown here. We repeat the iterations 1000 times.

source("mcShaneCode.R")
data(fertility)

config: choose parameters (selection process not shown here)
children <- fertility$children

1

shape <- 1.116
scale <- rep(2.635, length(children))
rep <- 1000
nstepsConv <- c(132, 24, 132, 24, 132, 36)
ntermsSeries <- c(20, 17)
conv_series_acc <- 1e-7

performance model
perf <- benchmark(direct0 =

dWeibullCount_loglik(children, shape, scale, "conv_direct",
1, TRUE, nstepsConv[1],
conv_extrap = FALSE),

direct1 =
dWeibullCount_loglik(children, shape, scale, "conv_direct",

1, TRUE, nstepsConv[2],
conv_extrap = TRUE),

naive0 =
dWeibullCount_loglik(children, shape, scale, "conv_naive",

1, TRUE, nstepsConv[3],
conv_extrap = FALSE),

naive1 = dWeibullCount_loglik(children, shape, scale,
"conv_naive",
1, TRUE, nstepsConv[4],
conv_extrap = TRUE),

dePril0 = dWeibullCount_loglik(children, shape, scale,
"conv_dePril",
1, TRUE, nstepsConv[5],
conv_extrap = FALSE),

dePril1 = dWeibullCount_loglik(children, shape, scale,
"conv_dePril",
1, TRUE, nstepsConv[6],
conv_extrap = TRUE),

series_mat =
dWeibullCount_loglik(children, shape, scale,

"series_mat", 1, TRUE,
series_terms = ntermsSeries[1]),

series_acc =
dWeibullCount_loglik(children, shape, scale,

"series_acc", 1, TRUE,
series_terms = ntermsSeries[2],
series_acc_eps = conv_series_acc),

mcShane = dWeibullCount_McShane(scale, shape,
children, jmax = 150),

replications = rep, order = "relative",
columns = c("test", "replications", "relative", "elapsed")
)

print(perf)

2

seriesacc 1000 1 5.45999999999998
seriesmat 1000 1.31 7.15099999999995
direct1 1000 2.97 16.215
naive1 1000 2.98 16.273
dePril1 1000 3.158 17.241
dePril0 1000 11.139 60.82
naive0 1000 14.675 80.126
direct0 1000 16.381 89.441
mcShane 1000 18.594 101.523

As can been seen, all the methods outperform the McShane’s original code with the series
methods almost 20 times faster and the extrapolated convolution methods roughly 6 times
faster. As noted in the package documentation, the series methods are less robust to large
values of count and may fail for some application. We therefore encourage the users to use the
extrapolated convolution method (the default in Countr) as much as possible.

We conclude this document by saving the work space to avoid re-running the computation
in future exportation of the document:

save.image()

References
Baker, R. and Kharrat, T. (2017). Event count distributions from renewal processes: fast
computation of probabilities. IMA Journal of Management Mathematics.

Kharrat, T., Boshnakov, G. N., McHale, I., and Baker, R. (2019). Flexible regression models for
count data based on renewal processes: The Countr package. Journal of Statistical Software,
90(13):1–35.

Kusnierczyk, W. (2012). rbenchmark: Benchmarking routine for R. R package version 1.0.0.

McShane, B., Adrian, M., Bradlow, E. T., and Fader, P. S. (2008). Count models based on
weibull interarrival times. Journal of Business & Economic Statistics, 26(3):369–378.

Winkelmann, R. (1995). Duration dependence and dispersion in count-data models. Journal of
Business & Economic Statistics, 13(4):467–474.

3

