--- title: "ConSciR" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{ConSciR} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ## Introduction `ConSciR` is an R package specifically designed to assist conservators, scientists, and engineers by providing a toolkit for performing calculations and streamlining common tasks in cultural heritage conservation. ## Install and load You can install the development version of the package from GitHub using either the `pak` or `devtools` package: ``` r install.packages("pak") pak::pak("BhavShah01/ConSciR") ``` -or- ``` r # install.packages("devtools") devtools::install_github("BhavShah01/ConSciR") ``` Visit the package GitHub page for updates and source code: [ConSciR Github](https://github.com/BhavShah01/ConSciR) ## Examples Load the necessary packages: ```{r load packages, message=FALSE, warning=FALSE} # Load packages library(ConSciR) library(dplyr) library(ggplot2) ``` ### Add calculated values using `mutate` Enrich your dataset with environmental metrics computed by ConSciR functions: ```{r table of calculated values, message=FALSE, warning=FALSE} filepath <- data_file_path("mydata.xlsx") mydata <- readxl::read_excel(filepath, sheet = "mydata") mydata <- mydata |> filter(Sensor == "Room 1") # Add calculated values using mutate head(mydata) |> mutate( Absolute_Humidity = calcAH(Temp, RH), Dew_Point = calcDP(Temp, RH), Mixing_Ratio = calcMR(Temp, RH), Humidity_Ratio = calcHR(Temp, RH), Enthalpy = calcEnthalpy(Temp, RH), Saturation_Vapour_Pressure = calcPws(Temp), Actual_Vapour_Pressure = calcPw(Temp, RH), Air_Density = calcAD(Temp, RH), Temp_calc = calcTemp(RH, Dew_Point), RH_AH_calc = calcRH_AH(Temp, Absolute_Humidity), RH_DP_calc = calcRH_DP(Temp, Dew_Point) ) |> glimpse() ``` ### Visualise and explore data with calculations Combine calculations and plotting to explore patterns visually: ```{r calculations to visualise the data, message=FALSE, warning=FALSE, fig.alt="visualisations"} mydata |> # Calculate Absolute Humidity and Dew Point mutate( AbsHum = calcAH(Temp, RH), DewPoint = calcDP(Temp, RH) ) |> # Create base plot using graph_TRH function graph_TRH() + # Add Absolute Humidity line geom_line(aes(Date, AbsHum), color = "green") + # Add Dew Point line geom_line(aes(Date, DewPoint), color = "purple") + # Apply a theme theme_bw() ``` - **Conservator tools: mould growth index**\ Calculate mould growth index using **`calcMould_VTT()`** and visualise it alongside humidity data. ```{r mould_risk, message=FALSE, warning=FALSE, fig.alt="mould"} mydata |> mutate(Mould = calcMould_VTT(Temp, RH)) |> ggplot() + geom_area(aes(Date, Mould), fill = "darkgreen", alpha = 0.5) + labs(title = "Mould Growth Index", y = "Mould Index") + theme_classic() ``` ### Built-in psychrometric chart Visualise the first 100 rows of the dataset with a psychrometric chart: ```{r psychrometric chart, message=FALSE, warning=FALSE, fig.alt="psychrometric_chart_example"} head(mydata, 100) |> graph_psychrometric() + theme_bw() ``` ### Psychrometric Chart Customisation Create tailored psychrometric charts by adjusting parameters such as temperature and humidity ranges, visual transparency, or y-axis metrics: ```{r psychrometric custom, message=FALSE, warning=FALSE, fig.alt="psychrometric_chart_custom"} head(mydata, 100) |> graph_psychrometric( LowT = 10, HighT = 28, LowRH = 20, HighRH = 80, data_alpha = 0.3, y_func = calcAH ) + theme_classic() ``` ------------------------------------------------------------------------ This vignette provides a practical introduction to the package’s core functionalities. For full details on all functions, see the package Reference manual or use `?function_name` within R.