
Overview of the package BuyseTest

Brice Ozenne

May 8, 2025

This vignette describes the main functionalities of the BuyseTest package, focusing on software (and

not statistical) aspects, and assume that the reader is familar with the GPC framework 1.

The BuyseTest package implements the Generalized Pairwise Comparisons (GPC) as defined in Buyse

(2010) for complete observations, and extended in Péron et al. (2018) to deal with right-censoring and

Piffoux et al. (2024) to incorporate a restriction time. When considering a single endpoint, the GPC

procedure can be summarized as follow. Denote the endpoint by Y in the treatment group and by X in

the control group. Given a threshold of clinical relevance τ , the aim of GPC is to estimate the proportion

in favor of treatment2
P [Y ≥ X + τ] and the proportion in favor of control P [X ≥ Y + τ]. Their difference

P [Y ≥ X + τ]−P [X ≥ Y + τ] leads to the net treatment benefit and their ratio P[Y ≥X+τ]
P[X≥Y +τ]

to the win ratio.

The software also evaluate the proportion of neutral pairs P [♣X − Y ♣ < τ] and which can be included to

obtain the probabilistic index P [Y ≥ X + τ] + 0.5P [♣X − Y ♣ < τ] or win odds P[Y ≥X+τ]+0.5P[|X−Y |<τ]
P[X≥Y +τ]+0.5P[|X−Y |<τ]

.

• the function BuyseTest performs the GPC procedure and is the main function of the package. The

user can interact with its output via various methods:

– summary to obtain an overview of the results, including the estimated net treatment benefit.

The result table at the end of the output can be directly access using model.tables.

– coef to extract the estimates.

– confint or model.tables to extract estimates, confidence intervals, and p.values.

– plot for a graphical display of the scoring of the pair per endpoint.

– sensitivity to perform a sensitivity analysis on the choice of the threshold(s).

– nobs to extract the number of observations and pairs.

– getIid to extract the iid decomposition of the estimator.

– getPairScore to extract the contribution of each pair to the net treatment benefit.

– getSurvival to extract the estimates of the survival used for right-censored endpoints.

– BuyseMultComp to adjust p-values and confidence intervals for multiple comparisons.

• the powerBuyseTest function performs simulation studies, e.g. to estimate the statistical power or

assess the bias / type 1 error rate of a test for a specific design. The simBuyseTest function can

facilitate the definition of the data generating mechanism.

1if not, Buyse (2010) is a good place to start.
2in absence of ties this equals the Wilcoxon-Mann-Whitney parameter

1

• the BuyseTest.options function enables the user to access the default values used in the BuyseTest

package. The function can also change the default values to better match the user needs.

Another vignette, "Wilcoxon test via GPC", details connexions between GPC and the Wilcoxon rank

sum test. Before going further we need to load the BuyseTest package in the R session:

library(BuyseTest)

library(data.table)

To illustrate the functionalities of the package, we will used the veteran dataset from the survival

package:

data(cancer, package = "survival")

veteran <- cbind(id = 1:NROW(veteran), veteran)

veteran$trt <- factor(veteran$trt,1:2,c("Pl","Exp"))

head(veteran)

id trt celltype time status karno diagtime age prior

1 1 Pl squamous 72 1 60 7 69 0

2 2 Pl squamous 411 1 70 5 64 10

3 3 Pl squamous 228 1 60 3 38 0

4 4 Pl squamous 126 1 60 9 63 10

5 5 Pl squamous 118 1 70 11 65 10

6 6 Pl squamous 10 1 20 5 49 0

See ?veteran for a presentation of the database.

Note: the BuyseTest package is under active development. Newer package versions may include

additional functionalities and fix previous bugs. The version of the package that is being is:

utils::packageVersion("BuyseTest")

[1] ‘3.2.0’

For completness, the details of the R session used to generate this document are:

sessionInfo()

R version 4.3.3 (2024-02-29)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 22.04.5 LTS

Matrix products: default

BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0

LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8

[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

2

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: Europe/Copenhagen

tzcode source: system (glibc)

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] data.table_1.16.2 prodlim_2024.06.25 ggplot2_3.5.1 BuyseTest_3.2.0

[5] Rcpp_1.0.13 survival_3.5-8

loaded via a namespace (and not attached):

[1] Matrix_1.6-5 gtable_0.3.5 future.apply_1.11.2 dplyr_1.1.4

[5] compiler_4.3.3 tidyselect_1.2.1 MatrixModels_0.5-3 parallel_4.3.3

[9] globals_0.16.3 splines_4.3.3 scales_1.3.0 lattice_0.22-5

[13] R6_2.5.1 generics_0.1.3 future_1.34.0 tibble_3.2.1

[17] munsell_0.5.1 pillar_1.9.0 rlang_1.1.4 utf8_1.2.4

[21] cli_3.6.3 withr_3.0.1 magrittr_2.0.3 digest_0.6.37

[25] grid_4.3.3 pbapply_1.7-2 lifecycle_1.0.4 lava_1.8.0

[29] vctrs_0.6.5 SparseM_1.81 glue_1.8.0 listenv_0.9.1

[33] codetools_0.2-19 stats4_4.3.3 parallelly_1.38.0 fansi_1.0.6

[37] colorspace_2.1-1 tools_4.3.3 pkgconfig_2.0.3

3

1 Performing generalized pairwise comparisons (GPC)

To perform generalized pairwise comparisons, the BuyseTest function needs:

• where the data are stored - argument data

• the name of the endpoints - argument endpoint

• the type of each endpoint - argument type

• the variable defining the two treatment groups - argument treatment

The BuyseTest function has many optional arguments. For example:

• the threshold of clinical relevance associated to each endpoint - argument threshold

• the censoring associated to each endpoint (for time to event endpoints) - argument status

There are two equivalent ways to define the GPC:

• using a separate argument for each element:

BT <- BuyseTest(data = veteran,

endpoint = "time",

type = "timeToEvent",

treatment = "trt",

status = "status",

threshold = 20)

Generalized Pairwise Comparisons

Settings

- 2 groups : Control = Pl and Treatment = Exp

- 1 endpoint:

priority endpoint type operator threshold event

1 time time to event higher is favorable 20 status (0 1)

- right-censored pairs: probabilistic score based on the survival curves

Point estimation and calculation of the iid decomposition

Estimation of the estimator’s distribution

- method: moments of the U-statistic

Gather the results in a S4BuyseTest object

4

• or via a formula interface. In the formula interface endpoint are wrapped by parentheses. The

parentheses must be preceded by their type:

- binary (b, bin, or binary)

- continuous (c, cont, or continuous)

- time to event (t, tte, or timetoevent)

Here we also set the argument trace to FALSE to execute silently the function:

BT.f <- BuyseTest(trt ∼ tte(time, threshold = 20, status = "status"),

data = veteran, trace = FALSE)

We can check that the two approaches are equivalent:

BT.f@call <- list(); BT@call <- list();

testthat::expect_equal(BT.f,BT)

1.1 Displaying the results

The results of the GPC can be displayed using the summary method:

summary(BT)

Generalized pairwise comparisons with 1 endpoint

- statistic : net treatment benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- confidence level: 0.95

- inference : H-projection of order 1 after atanh transformation

- treatment groups: Exp (treatment) vs. Pl (control)

- censored pairs : probabilistic score based on the survival curves

- results

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta

time 20 100 37.78 46.54 15.68 0 -0.0877

CI [2.5% ; 97.5%] p.value

[-0.2735;0.1045] 0.37162

It displays information about each endpoint, percentage of pairs classified as favorable, unfavorable,

neutral, and uninformative, as well as the estimated net treatment benefit (column Delta), its confidence

interval, and the corresponding p-value testing the absence of a group difference. Other To display the

number of pairs instead of the percentage of pairs that are favorable/unfavorable/neutral/uniformative,

set the argument percentage to FALSE. See help(S4BuyseTest-summary) for more details about the

summary method, its input and output. For a more concise display of the results, consider using the print

method:

print(BT, percentage = FALSE)

5

endpoint threshold total favorable unfavorable neutral uninf Delta CI [2.5% ; 97.5%]

time 20 4692 1772.59 2183.89 735.52 0 -0.0877 [-0.2735;0.1045]

p.value

0.37162

To access these values, we recommand using the model.tables method that outputs the information

from the previous table in a data.frame format:

model.tables(BT, percentage = FALSE)

endpoint threshold total favorable unfavorable neutral uninf Delta lower.ci

1 time 20 4692 1772.593 2183.886 735.5205 0 -0.08765836 -0.2735301

upper.ci p.value

1 0.1045245 0.371617

An even more concise output can be obtained via the confint method:

confint(BT)

estimate se lower.ci upper.ci null p.value

time_t20 -0.08765836 0.09760901 -0.2735301 0.1045245 0 0.371617

or coef method:

coef(BT)

[1] -0.08765836

1.2 What about other summary statistics?

Results for other summary statistics are also accessible: - argument statistic

• proportion in favor of treatment (favorable): P [Y ≥ X + τ]

• proportion in favor of control (unfavorable): P [X ≥ Y + τ]

• win ratio (winRatio): P[Y ≥X+τ]
P[X≥Y +τ]

For instance, to display the estimated win ratio instead of the estimated net treatment benefit, use:

summary(BT, statistic = "winRatio")

6

Generalized pairwise comparisons with 1 endpoint

- statistic : win ratio (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 1

- confidence level: 0.95

- inference : H-projection of order 1 after log transformation

- treatment groups: Exp (treatment) vs. Pl (control)

- censored pairs : probabilistic score based on the survival curves

- results

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta

time 20 100 37.78 46.54 15.68 0 0.8117

CI [2.5% ; 97.5%] p.value

[0.5134;1.2833] 0.37195

△! In presence of ties, the null distribution of the proportion in favor of treatment or control depends

on the data generative mechanism and the threshold of clinical relevance. This is why the confint method

will not produce any p.value:

confint(BT, statistic = "favorable")

estimate se lower.ci upper.ci null p.value

time_t20 0.3777905 0.04902199 0.2874747 0.477467 NA NA

unless the argument null is provided by the user. A permutation test may be used to empirically

estimate a value for the null hypothesis:

BT.perm <- BuyseTest(trt ∼ tte(time, threshold = 20, status = "status"),

data = veteran, trace = FALSE,

method.inference = "permutation", seed = 10)

confint(BT.perm, statistic = "favorable")

estimate se lower.ci upper.ci null p.value

time_t20 0.3777905 0.04770182 NA NA 0.4205855 0.3636364

which, in this example, is around 0.42. It worth noting that testing an inadequate null hypothesis can

have dramatic consequences on the p-value:

rbind(confint(BT, statistic = "favorable", null = 0.42),

confint(BT, statistic = "favorable", null = 0.5))

estimate se lower.ci upper.ci null p.value

time_t20 0.3777905 0.04902199 0.2874747 0.477467 0.42 0.39826735

time_t201 0.3777905 0.04902199 0.2874747 0.477467 0.50 0.01673643

7

Considering the proportion of neutral pairs in the summary statistics: - argument add.halfNeutral

• Wilcoxon-Mann-Whitney parameter or probabilistic index: P [Y ≥ X + τ] + 0.5P [♣Y − X♣ < τ].

• win odds: P[Y ≥X+τ]+0.5P[|Y −X|<τ]
P[X≥Y +τ]+0.5P[|Y −X|<τ]

.

have been recommended (e.g. Ajufo et al. (2023)) and these summary statistics can be output by specifying

the argument add.halfNeutral to TRUE when calling BuyseTest:

BT.half <- BuyseTest(trt ∼ tte(time, threshold = 20, status = "status"),

data = veteran, trace = FALSE, add.halfNeutral = TRUE)

confint(BT.half, statistic = "favorable")

estimate se lower.ci upper.ci null p.value

time_t20 0.4561708 0.04880921 0.3632263 0.5522714 0.5 0.3716632

confint(BT.half, statistic = "winRatio")

estimate se lower.ci upper.ci null p.value

time_t20 0.8388127 0.1650208 0.5704361 1.233454 1 0.3716211

Testing a net treatment benefit of 0, a win odds of 1, or a Wilcoxon-Mann-Whitney parameter of

0.5 corresponds to the same hypothesis and therefore the same p-value should be obtained. The (small)

discrepancy in p-values observed in this example (0.371617 vs. 0.3716211 vs. 0.3716632) are due to

small sample approximation. Such discrepancies will not arise when using non-parametric bootstrap or

permutation tests using quantiles of the bootstrap or permutation distribution, e.g.:

BT.halfperm <- BuyseTest(trt ∼ tte(time, threshold = 20, status = "status"),

data = veteran, trace = FALSE, add.halfNeutral = TRUE,

method.inference = "bootstrap", seed = 10)

Mstat <- rbind(netBenefit = confint(BT.halfperm, statistic = "netBenefit"),

winRatio = confint(BT.halfperm, statistic = "winRatio"),

favorable = confint(BT.halfperm, statistic = "favorable"))

Mstat

estimate se lower.ci upper.ci null p.value

netBenefit -0.08765836 0.10021632 -0.2720510 0.1033974 0.0 0.383

winRatio 0.83881270 0.17440155 0.5722640 1.2306429 1.0 0.383

favorable 0.45617082 0.05010816 0.3639745 0.5516987 0.5 0.383

8

1.3 Stratified GPC

GPC can be performed for subgroups of a categorical variable - argument strata

For instance, the celltype may have huge influence on the survival time and the investigator would like to

only compare patients that have the same celltype. In the formula interface this is achieved by adding a

single variable in the right hand side of the formula:

ffstrata <- trt ∼ tte(time, threshold = 20, status = "status") + celltype

BTstrata <- BuyseTest(ffstrata, data = veteran, trace = 0)

Not being wrapped by bin, cont or tte differentiates it from endpoint variables. When doing a

stratified analysis, the summary method displays strata-specific and global results3:

keep.colStrata <- c("endpoint","strata", "total",

"favorable","unfavorable","neutral","uninf","delta","Delta")

summary(BTstrata, type.display = keep.colStrata)

Generalized pairwise comparisons with 1 endpoint and 4 strata

- statistic : net treatment benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- confidence level: 0.95

- inference : H-projection of order 1 after atanh transformation

- treatment groups: Exp (treatment) vs. Pl (control)

- strata weights : 26.38%, 34.63%, 18.47%, 20.52%

- uninformative pairs: no contribution

- results

endpoint strata total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta Delta

time global 100.00 36.06 45.77 17.33 0.85 -0.0997 -0.0997

squamous 25.38 14.33 8.77 2.28 0.00 0.2193

smallcell 45.69 12.69 20.88 11.27 0.85 -0.1792

adeno 13.71 4.74 6.15 2.81 0.00 -0.1034

large 15.23 4.30 9.97 0.96 0.00 -0.3722

The percentage of pairs in the total/favorable/unfavorable/neutral/uninf columns are relative to the

overall number of pairs whereas the column delta presents the endpoint and strata-specific net treatment

benefits (in the last 4 lines). The last column (Delta) displays the global (i.e. pooled over strata),

conditional, net treatment benefit.

△! With this weighting scheme the proportion of favorable pairs minus the proportion of unfavorable

pairs (36.06%-45.77%=9.71%) does not equal the global net treatment benefit (9.97%). To retrieve the

net treatment benefits, we first extract the number of pairs per strata using the method nobs:

strata.obs <- as.data.frame(nobs(BTstrata, strata = TRUE))

strata.obs

Pl Exp pairs

squamous 15 20 300

3the strata-specific results can be removed by setting the argument strata to "global" when calling summary.

9

smallcell 30 18 540

adeno 9 18 162

large 15 12 180

and use the method model.tables to extract the number of favorable and unfavorable pairs per strata:

dfStrata <- model.tables(BTstrata, percentage = FALSE,

strata = c("squamous","smallcell","adeno","large"),

columns = c("strata","total","favorable","unfavorable"))

dfStrata

strata total favorable unfavorable

2 squamous 300 169.40260 103.6104

3 smallcell 540 150.00000 246.7778

4 adeno 162 56.00000 72.7500

5 large 180 50.83333 117.8333

We retrieve the strata-specific net treatment benefits by comparing, in each strata, the number of

favorable and unfavorable pairs relative to the number of pairs4:

delta <- (dfStrata$favorable - dfStrata$unfavorable)/strata.obs$pairs

delta

[1] 0.2193074 -0.1792181 -0.1033951 -0.3722222

The global net treatment benefit is then the sum of the strata-specific net treatment benefits weighted

by the strata weights:

weightCMH <- strata.obs$pairs/(strata.obs$Pl + strata.obs$Exp)

list(estimate = sum(delta * weightCMH/sum(weightCMH)),

weight = 100*weightCMH/sum(weightCMH))

$estimate

[1] -0.09967584

$weight

[1] 26.38329 34.62807 18.46830 20.52034

△! One exception is for the win ratio and win odds where the ratio between the global proportions is

taken, i.e., pooling is performed at the numerator and at the denominator instead of pooling fractions -

see Dong et al. (2018), equation 1.

4Alernatively one could compute, from the summary, the difference between the percentage of favorable and unfavorable
pairs relative to the percentage of pairs in the strata, e.g. (14.33% − 8.77%)/25.38% ≈ 21.93%

10

The default weighting scheme is CMH, standing for Cochran-Mantel-Haenszel, which has been recom-

maned in the litterature (Dong et al., 2018). It is efficient under the assumption of a common multiplicative

effect (across strata) on the odds ratio scale.

Other weighting schemes can be used. - argument pool.strata.

When considering additive effect, one should instead weight proportionnaly to the number of pairs:

BTstrata2 <- BuyseTest(ffstrata, data = veteran, trace = 0, pool.strata = "buyse")

summary(BTstrata2, type.display = keep.colStrata)

Generalized pairwise comparisons with 1 endpoint and 4 strata

- statistic : net treatment benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- confidence level: 0.95

- inference : H-projection of order 1 after atanh transformation

- treatment groups: Exp (treatment) vs. Pl (control)

- strata weights : 25.38%, 45.69%, 13.71%, 15.23%

- uninformative pairs: no contribution

- results

endpoint strata total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta Delta

time global 100.00 36.06 45.77 17.33 0.85 -0.0971 -0.0971

squamous 25.38 14.33 8.77 2.28 0.00 0.2193

smallcell 45.69 12.69 20.88 11.27 0.85 -0.1792

adeno 13.71 4.74 6.15 2.81 0.00 -0.1034

large 15.23 4.30 9.97 0.96 0.00 -0.3722

The strata-specifc net treatment benefits are unchanged: the weighting scheme only affects the evalua-

tion of the overall net treatment benefit. With this weighting scheme it now equals the difference between

the overall proportion of favorable vs. unfavorable pairs (36.06%-45.77%). While extractors will by default

output global estimates (i.e. after pooling the results over strata)

confint(BTstrata2)

estimate se lower.ci upper.ci null p.value

time_t20 -0.09706901 0.0977929 -0.2829348 0.09582321 0 0.323961

one can specify the argument strata to extract strata-specific estimates:

confint(BTstrata, strata = TRUE)

estimate se lower.ci upper.ci null p.value

time_t20.squamous 0.2193074 0.1911515 -0.1690137 0.5486919 0 0.2669352

time_t20.smallcell -0.1792181 0.1540933 -0.4567640 0.1301230 0 0.2551275

time_t20.adeno -0.1033951 0.2465197 -0.5314450 0.3667172 0 0.6771002

time_t20.large -0.3722222 0.2190018 -0.7110335 0.1068610 0 0.1240457

△! The pooled estimator presented in this section have a conditional interpretation, as they summarize

comparisons made between observations from the same strata. They will generally differ from the marginal

(i.e. non-adjusted) net treatment benefit and tend to be more extreme (i.e. away from 0) in presence of

group difference.

11

1.4 Standardization

When the interest lies in a marginal effect but one wish to adjust on baseline covariates to obtain more

precise estimate, one should not restrict the comparisons between pairs of observations from the same

strata. Instead one should estimate a net treatment benefit for each possible combinations of strata and

pool the results (Buyse et al. (2025), chapter 9). This is what is being done when setting the argument

pool.strata to "standardization":

BTstd <- BuyseTest(ffstrata, data = veteran, trace = 0, pool.strata = "standardization")

model.tables(BTstd)[,c("strata","total","delta","Delta","lower.ci","upper.ci","p.value")]

strata total delta Delta lower.ci upper.ci p.value

1 global 100.000000 -0.11874500 -0.118745 -0.2843405 0.0537305 0.1767059

2 squamous 6.393862 0.21930736 NA NA NA NA

3 smallcell.squamous 12.787724 0.35699653 NA NA NA NA

4 adeno.squamous 3.836317 0.41018519 NA NA NA NA

5 large.squamous 6.393862 0.03622106 NA NA NA NA

6 squamous.smallcell 5.754476 -0.50654161 NA NA NA NA

7 smallcell 11.508951 -0.17921811 NA NA NA NA

8 adeno.smallcell 3.452685 -0.25308642 NA NA NA NA

9 large.smallcell 5.754476 -0.80740741 NA NA NA NA

10 squamous.adeno 5.754476 -0.41165224 NA NA NA NA

11 smallcell.adeno 11.508951 -0.02906379 NA NA NA NA

12 adeno 3.452685 -0.10339506 NA NA NA NA

13 large.adeno 5.754476 -0.76311728 NA NA NA NA

14 squamous.large 3.836317 -0.04494949 NA NA NA NA

15 smallcell.large 7.672634 0.25946502 NA NA NA NA

16 adeno.large 2.301790 0.21296296 NA NA NA NA

17 large 3.836317 -0.37222222 NA NA NA NA

Here strata equal to squamous means that the comparison betwen the active and control group was

made using only patients whose lung cancer cell type were squamous. We retrive the same results as

when setting pool.strata to "buyse" or "CMH". However now additional strata have been added like

"smallcell.squamous" where control patients whose lung cancer cell type were smallcell are being

compared to active patients whose lung cancer cell type were squamous. Indeed:

BuyseTest(trt ∼ tte(time, threshold = 20, status = "status"),

data = rbind(veteran[veteran$celltype == "smallcell" & veteran$trt == "Pl",],

veteran[veteran$celltype == "squamous" & veteran$trt == "Exp",]),

trace = 0)

endpoint threshold Delta

time 20 0.357

leads, up to rounding, to the same result.

Note: while it is possible to extract the strata-specific estimate (e.g. coef(BTstd, strata = TRUE))

the software does not keep track of the strata-specific uncertainty via the H-decomposition. It will output

an error message when requesting it (e.g. confint(BTstd, strata = TRUE)). A resampling method

should be used instead.

12

1.5 Using multiple endpoints

More than one endpoint can be considered by indicating a vector of endpoints, types, and thresholds. In

the formula interface, the different endpoints must be separated with a "+" on the right hand side of the

formula:

ff2 <- trt ∼ tte(time, threshold = 20, status = "status") + cont(karno, threshold = 0)

BT.H <- BuyseTest(ff2, data = veteran, trace = 0)

summary(BT.H)

Generalized pairwise comparisons with 2 prioritized endpoints

- statistic : net treatment benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- confidence level: 0.95

- inference : H-projection of order 1 after atanh transformation

- treatment groups: Exp (treatment) vs. Pl (control)

- censored pairs : probabilistic score based on the survival curves

- neutral pairs : re-analyzed using lower priority endpoints

- results

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta Delta

time 20 100.00 37.78 46.54 15.68 0 -0.0877 -0.0877

karno 15.68 5.78 7.11 2.78 0 -0.0133 -0.1009

CI [2.5% ; 97.5%] p.value

[-0.2735;0.1045] 0.37162

[-0.2901;0.0959] 0.31478

The hierarchy of the endpoint is defined from left (most important endpoint, here time) to right

(least important endpoint, here karno). In the summary output, the confidence intervals and p.values are

computed for the column Delta, i.e. here -8.77% is the net treatment benefit for the first endpoint (line

1) and -10.09% is the net treatment benefit for the first and second endpoint (line 2). In other words,

the last confidence interval and p-value is the one for the analysis over all endpoints (generally the one to

report).

A graphical representation of the GPC procedure can be obtained by the plot method. It will display

the percentage of favorable, unfavorable, neutral, and uninformative pairs per endpoint. Three (equivalent)

graphical display are possible, the first one ("hist") being the recommanded one:

plot(BT.H, type = "hist")

plot(BT.H, type = "pie")

plot(BT.H, type = "racetrack")

13

0%

25%

50%

75%

100%

time_t20 karno

"hist"

0

25

50

75

time_t20

karno

"racetrack"

0

25

50

75

0

25

50

75

time_t20 karno

"pie"

Pair (%) favorable unfavorable neutral uninf

It is also possible to perform the comparisons on all pairs for all endpoints by setting the argument

hierarchical to FALSE:

BT.nH <- BuyseTest(ff2, hierarchical = FALSE, data = veteran, trace = 0)

summary(BT.nH)

Generalized pairwise comparisons with 2 endpoints

- statistic : net treatment benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- confidence level: 0.95

- inference : H-projection of order 1 after atanh transformation

- treatment groups: Exp (treatment) vs. Pl (control)

- censored pairs : probabilistic score based on the survival curves

- results

endpoint threshold weight total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta

time 20 0.5 100 37.78 46.54 15.68 0 -0.0877

karno 0.5 100 41.82 44.95 13.24 0 -0.0313

Delta CI [2.5% ; 97.5%] p.value

-0.0438 [-0.1388;0.0519] 0.36977

-0.0595 [-0.2267;0.1111] 0.49514

14

In that case the score of a pair is the weighted sum of the score relative to each endpoint. By default,

the weights are all set to the same value but this behavior can be changed by setting the argument weight

when calling BuyseTest, e.g.:

ff2w <- trt ∼ tte(time, threshold = 20, status = "status", weight = 0.8)

ff2w <- update.formula(ff2w, . ∼ . + cont(karno, threshold = 0, weight = 0.2))

BT.nHw <- BuyseTest(ff2w, hierarchical = FALSE, data = veteran, trace = 0)

model.tables(BT.nHw)

endpoint threshold weight total favorable unfavorable neutral uninf delta

1 time 2e+01 0.8 100 37.77905 46.54489 15.67606 0 -0.08765836

3 karno 1e-12 0.2 100 41.81586 44.94885 13.23529 0 -0.03132992

Delta lower.ci upper.ci p.value

1 -0.07012668 -0.2203714 0.08336855 0.3707289

3 -0.07639267 -0.2503756 0.10237001 0.4026905

This has been refered as the O’Brien test in the litterature (Verbeeck et al. (2019), section 3.2).

Alternatively, one may be interested in the endpoint specific results. This can be performed by applying

the BuyseTest function separately to each endpoint, e.g.:

confint(BuyseTest(trt ∼ cont(karno, threshold = 0), data = veteran, trace = 0))

estimate se lower.ci upper.ci null p.value

karno -0.03132992 0.09787113 -0.2197111 0.1593037 0 0.7490407

or setting the argument cumulative to FALSE when calling the confint function:

confint(BT.nHw, cumulative = FALSE)

estimate se lower.ci upper.ci null p.value

time_t20 -0.08765836 0.09760901 -0.2735301 0.1045245 0 0.3716170

karno -0.03132992 0.09787113 -0.2197111 0.1593037 0 0.7490407

Note: the apparent discrepency in p-value between the hierarchical and non-hierarchical GPC at the

first priority (0.3762 vs 0.3698 vs 0-3707) is due to the use of a transformation that makes the p-value

dependent on the estimate. Otherwise the p-value would be the same at the first priority, e.g.:

confint(BT.nHw, transform = FALSE)

estimate se lower.ci upper.ci null p.value

time_t20 -0.07012668 0.07808721 -0.2231748 0.08292143 0 0.3691557

karno -0.07639267 0.09093303 -0.2546181 0.10183280 0 0.4008534

15

1.6 Statistical inference

Uncertainty about the estimates can be quantified using: - argument method.inference

• permutation test ("permutation"). Assuming exchangeability under the null hypothesis, this

approach gives valid p-values (regardless to the sample size) for testing the absence of a difference

between the groups.

BT.perm <- BuyseTest(trt ∼ tte(time, threshold = 20, status = "status"),

data = veteran, trace = 0, method.inference = "permutation",

seed = 10)

summary(BT.perm)

Generalized pairwise comparisons with 1 endpoint

- statistic : net treatment benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- confidence level: 0.95

- inference : permutation test with 1000 samples

p-value computed using the permutation distribution

- treatment groups: Exp (treatment) vs. Pl (control)

- censored pairs : probabilistic score based on the survival curves

- results

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta p.value

time 20 100 37.78 46.54 15.68 0 -0.0877 0.35265

• bootstrap resampling ("bootstrap"). In large enough samples, this approach gives valid p-values

and confidence intervals.

BT.boot <- BuyseTest(trt ∼ tte(time, threshold = 20, status = "status"),

data = veteran, trace = 0, method.inference = "bootstrap",

seed = 10)

summary(BT.boot)

Generalized pairwise comparisons with 1 endpoint

- statistic : net treatment benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- confidence level: 0.95

- inference : bootstrap resampling with 1000 samples

CI computed using the percentile method; p-value by test inversion

- treatment groups: Exp (treatment) vs. Pl (control)

- censored pairs : probabilistic score based on the survival curves

- results

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta

time 20 100 37.78 46.54 15.68 0 -0.0877

CI [2.5% ; 97.5%] p.value

[-0.2721;0.1034] 0.383

16

• asymptotic distribution ("u-statistic"). In large enough samples, this approach gives valid

p-values and confidence intervals (Ozenne et al., 2021).

BT.ustat <- BuyseTest(trt ∼ tte(time, threshold = 20, status = "status"),

data = veteran, trace = 0, method.inference = "u-statistic")

summary(BT.ustat)

Generalized pairwise comparisons with 1 endpoint

- statistic : net treatment benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- confidence level: 0.95

- inference : H-projection of order 1 after atanh transformation

- treatment groups: Exp (treatment) vs. Pl (control)

- censored pairs : probabilistic score based on the survival curves

- results

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta

time 20 100 37.78 46.54 15.68 0 -0.0877

CI [2.5% ; 97.5%] p.value

[-0.2735;0.1045] 0.37162

The first two approaches require simulating a large number of samples and applying the GPC to each

of these samples. The seed argument is used to generate a seed for each sample. The number of samples

is set using the arugment n.resampling and it should large enough to limit the Monte Carlo error when

estimating the p-value. Typically should be at least 10000 to get, roughtly, 2-digit precision, as examplified

below:

set.seed(10)

sapply(1:10, function(i){mean(rbinom(1e4, size = 1, prob = 0.05))})

[1] 0.0511 0.0491 0.0489 0.0454 0.0516 0.0522 0.0468 0.0483 0.0491 0.0508

Indeed, here we get a reasonnable approximation of 0.05 (if we round and only keep 2 digits). Note

that to get 3 digits precision we would need more samples. The last method does not rely on resampling

but on the computation of the influence function of the estimator. Fortunately, when using the Gehan’s

scoring rule, this does not really involve any extra-calculations and this is therefore very fast to perform.

When using the Peron’s scoring rule, more serious extra-calculations are involved so the computation time

is expected to increase by a factor 5 to 10 compared to the point estimate alone (i.e. method.inference

equal to "none").

It is possible to relax the exchangeability assumption using a studentized permutation. A studentized

bootstrap is also possible to improve on the better small samples properties of the bootstrap confidence

intervals. Both rely on the asymptotic approach to estimate standard errors and are more numerically

intensive.

17

1.7 What if smaller is better?

By default BuyseTest will always assume that higher values of an endpoint are favorable. This behavior

can be changed by specifying operator = "<0" for an endpoint:

ffop <- trt ∼ tte(time, status = "status", threshold = 20, operator = "<0")

BTinv <- BuyseTest(ffop, data = veteran, trace = 0)

summary(BTinv)

Generalized pairwise comparisons with 1 endpoint

- statistic : net treatment benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- confidence level: 0.95

- inference : H-projection of order 1 after atanh transformation

- treatment groups: Exp (treatment) vs. Pl (control)

- censored pairs : probabilistic score based on the survival curves

- results

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta

time 20 100 46.54 37.78 15.68 0 0.0877

CI [2.5% ; 97.5%] p.value

[-0.1045;0.2735] 0.37162

Internally BuyseTest will compute the favorable and unfavorable score as usual and then switch them

around if the operator equals "<0".

18

1.8 Stopping comparison for neutral pairs

In presence of neutral pairs, BuyseTest will, by default, continue the comparison on the endpoints with

lower priority. For instance let consider a dataset with one observation in each treatment arm:

dt.sim <- data.table(Id = 1:2,

treatment = c("Yes","No"),

tumor = c("Yes","Yes"),

size = c(15,20))

dt.sim

Id treatment tumor size

<int> <char> <char> <num>

1: 1 Yes Yes 15

2: 2 No Yes 20

If we use the GPC with tumor as the first endpoint and size as the second endpoint:

BT.pair <- BuyseTest(treatment ∼ bin(tumor) + cont(size, operator = "<0"), data = dt.sim,

trace = 0, method.inference = "none")

summary(BT.pair)

Generalized pairwise comparisons with 2 prioritized endpoints

- statistic : net treatment benefit (delta: endpoint specific, Delta: global)

- treatment groups: Yes (treatment) vs. No (control)

- neutral pairs : re-analyzed using lower priority endpoints

- results

endpoint total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta Delta

tumor 100 0 0 100 0 0 0

size 100 100 0 0 0 1 1

the outcome of the comparison is neutral for the first priority, but favorable for the second. Setting

the argument neutral.as.uninf to FALSE will stop the comparison when a pair is classified as neutral:

BT.pair2 <- BuyseTest(treatment ∼ bin(tumor) + cont(size, operator = "<0"), data = dt.sim,

trace = 0, method.inference = "none", neutral.as.uninf = FALSE)

summary(BT.pair2)

Generalized pairwise comparisons with 2 prioritized endpoints

- statistic : net treatment benefit (delta: endpoint specific, Delta: global)

- treatment groups: Yes (treatment) vs. No (control)

- neutral pairs : ignored at lower priority endpoints

- results

endpoint total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) delta Delta

tumor 100 0 0 100 0 0 0

size 0 0 0 0 0 0 0

So in this case no pair is analyzed at second priority.

19

1.9 Is multiple testing a concern with GPC?

Yes, as with any other statistical method. Having a pre-defined statistical plan (i.e. written before looking

at the data) specifying the hierarchy of endpoints, their threshold of clinical relevance is recommanded.

When planning multiple GPC, summarize the results can be done via one of two principles:

• intersection union principle: one rejects the (global) null hypothesis if there is evidence for an

effect in all the GPC analyses. This is typically a sensitivity analysis: checking that the results are

not too sensitive to the choice of an hyperparameter. No multiplicity adjustment is needed other than

considering the largest p-value among all tests. For instance, when checking whether the estimated

net treatment benefit is similar across a range of threshold of clincial relevance, we would obtain a

p-value of 0.76

BTse <- sensitivity(BT.ustat, threshold = seq(0,500, length.out=10),

trace = FALSE)

BTse

time estimate se lower.ci upper.ci null p.value

1 0.00000 -0.08752774 0.10041203 -0.27851884 0.11012263 0 0.3858177

2 55.55556 -0.08095829 0.08957699 -0.25229456 0.09530004 0 0.3682107

3 111.11111 -0.03170177 0.07463991 -0.17629003 0.11422560 0 0.6712414

4 166.66667 0.01896964 0.06452954 -0.10713643 0.14447503 0 0.7688360

5 222.22222 0.03315614 0.05523512 -0.07506821 0.14060850 0 0.5486177

6 277.77778 0.04217485 0.04654025 -0.04914025 0.13279075 0 0.3653982

7 333.33333 0.04112991 0.03946828 -0.03631838 0.11808708 0 0.2979105

8 388.88889 0.04075638 0.03300933 -0.02402114 0.10519310 0 0.2174545

9 444.44444 0.04097871 0.03027888 -0.01844156 0.10011054 0 0.1764199

10 500.00000 0.03517173 0.02769280 -0.01915553 0.08929191 0 0.2044340

• union intersection principle: one rejects the (global) null hypothesis if there is evidence for an

effect for at least on of the GPC analyses. This is a typical exploratory analysis where one look

for the most promising outcome. Adjustment for multiplicity is needed. Since estimates from GPC

procedure are typically highly correlated, one can improve on bonferroni adjustment using a max-test

adjustment. This is what is performed via the BuyseMultComp function:

BuyseMultComp(BT.H, endpoint = 1:2)

- Univariate tests:

estimate se lower.ci upper.ci null p.value lower.band upper.band

time_t20 -0.08765836 0.09760901 -0.2735301 0.10452446 0 0.371617 -0.2798817 0.1113226

karno -0.10092285 0.09971277 -0.2901336 0.09588144 0 0.314777 -0.2965716 0.1028561

adj.p.value

time_t20 0.4117239

karno 0.3508339

20

Here we look at whether there is a benefit in survival alone (first priority time_t20) or a benefit over

both endpoint (second priority karno). Setting the argument cumulative to FALSE when considering non-

hierarchical GPC analyses enables to efficiently adjust endpoint-specific GPC for multiple comparisons:

BuyseMultComp(BT.nH, cumulative = FALSE, endpoint = 1:2)

- Univariate tests:

estimate se lower.ci upper.ci null p.value lower.band upper.band

time_t20 -0.08765836 0.09760901 -0.2735301 0.1045245 0 0.3716170 -0.2953329 0.1279261

karno -0.03132992 0.09787113 -0.2197111 0.1593037 0 0.7490407 -0.2420777 0.1822409

adj.p.value

time_t20 0.5597555

karno 0.9236602

One can also consider the global endpoint of two different GPC analyses:

BuyseMultComp(list(hierarchical = BT.H, Obrien = BT.nH), cluster = "id")

- Univariate tests:

estimate se lower.ci upper.ci null p.value lower.band

hierarchical -0.10092285 0.09971277 -0.2901336 0.09588144 0 0.3147770 -0.3014645

Obrien -0.05949414 0.08700807 -0.2266953 0.11111326 0 0.4951361 -0.2368800

upper.band adj.p.value

hierarchical 0.1081696 0.3831444

Obrien 0.1217304 0.5851872

Finally the sensitivity method can also be used to adjust for multiple comparisons over multiple

thresholds:

BTse.ustat <- sensitivity(BT.ustat, threshold = seq(0,500, length.out=10),

band = TRUE, adj.p.value = TRUE, seed = 10, trace = FALSE)

BTse.ustat[,c("time","estimate",

"lower.ci","upper.ci","p.value",

"lower.band","upper.band","adj.p.value")]

time estimate lower.ci upper.ci p.value lower.band upper.band adj.p.value

1 0.00000 -0.08752774 -0.27851884 0.11012263 0.3858177 -0.32450860 0.1597923 0.7746620

2 55.55556 -0.08095829 -0.25229456 0.09530004 0.3682107 -0.29401340 0.1397613 0.7528122

3 111.11111 -0.03170177 -0.17629003 0.11422560 0.6712414 -0.21223939 0.1509285 0.9810295

4 166.66667 0.01896964 -0.10713643 0.14447503 0.7688360 -0.13892698 0.1759257 0.9969925

5 222.22222 0.03315614 -0.07506821 0.14060850 0.5486177 -0.10250127 0.1676028 0.9257172

6 277.77778 0.04217485 -0.04914025 0.13279075 0.3653982 -0.07236883 0.1556205 0.7492675

7 333.33333 0.04112991 -0.03631838 0.11808708 0.2979105 -0.05604663 0.1375345 0.6544816

8 388.88889 0.04075638 -0.02402114 0.10519310 0.2174545 -0.04053858 0.1215153 0.5206881

9 444.44444 0.04097871 -0.01844156 0.10011054 0.1764199 -0.03359858 0.1151022 0.4429140

10 500.00000 0.03517173 -0.01915553 0.08929191 0.2044340 -0.03301187 0.1030295 0.4967546

21

Here by setting the argument band to TRUE (and adj.p.value to TRUE), we obtain confidence intervals

(and p-values) adjusted for multiple comparisons. Said otherwise, the columns lower.ci and upper.ci

provide a (pointwise) confidence interval with 95% coverage for a given threshold while the columns

lower.band and upper.band provide a (simutaneous) confidence interval with 95% coverage across all

given thresholds. The difference can be visualized using the autoplot method:

library(ggplot2)

autoplot(BTse.ustat)

−0.3

−0.2

−0.1

0.0

0.1

0.2

0 200 400

Threshold for time

N
e
t
b
e
n
e
fi
t

CIs Simulatenous CIs

Simultaneous and pointwise confidence intervals are here of similar width due to the very high corre-

lation between estimates across thresholds:

BTse.cor <- cor(lava::iid(BTse.ustat))

range(BTse.cor[lower.tri(BTse.cor)])

[1] 0.3716902 0.9848999

Note that with multiple endpoints, the thresholds can be specified using a list:

BTse.H <- sensitivity(BT.H, trace = FALSE,

threshold = list(time = seq(0,500,length = 10), karno = c(0,40,80)))

head(BTse.H)

time karno estimate se lower.ci upper.ci null p.value

1 0.00000 0 -0.08754474 0.10044847 -0.2786016 0.11017738 0 0.3858987

2 55.55556 0 -0.11177487 0.09915501 -0.2995661 0.08435417 0 0.2636263

3 111.11111 0 -0.08618872 0.09822940 -0.2732475 0.10715096 0 0.3826244

4 166.66667 0 -0.05180121 0.09818252 -0.2400240 0.14017526 0 0.5984319

5 222.22222 0 -0.03668720 0.09810141 -0.2253052 0.15458146 0 0.7086747

6 277.77778 0 -0.02906324 0.09773146 -0.2172647 0.16122161 0 0.7663054

or a matrix:

grid <- expand.grid(list("time_t20" = seq(0,500,length = 10), "karno" = c(0,40,80)))

cbind(head(grid)," " = " ... ",tail(grid))

BTse.H2 <-sensitivity(BT.H, threshold = grid, trace = FALSE)

range(BTse.H-BTse.H2)

22

time_t20 karno time_t20 karno

1 0.00000 0 ... 222.2222 80

2 55.55556 0 ... 277.7778 80

3 111.11111 0 ... 333.3333 80

4 166.66667 0 ... 388.8889 80

5 222.22222 0 ... 444.4444 80

6 277.77778 0 ... 500.0000 80

[1] 0 0

The latter should be used when the same endpoint is used at different priorities (each column correspond

to the threshold that should be used at a priority). As before we can display the results using the autoplot

function:

autoplot(BTse.H, col = NA)

alternative display:

autoplot(BTse.H, position = position_dodge(width = 15))

Threshold for karno : 0 Threshold for karno : 40 Threshold for karno : 80

0 200 400 0 200 400 0 200 400

−0.3

−0.2

−0.1

0.0

0.1

0.2

Threshold for time

N
e
t
b
e
n
e
fi
t

CIs

The autoplot function can only be used when 1 or 2 thresholds are varied at the same time.

23

2 Getting additional inside: looking at the pair level

So far we have looked at the overall score and probabilities. But it is also possible to extract the score

relative to each pair, as well as to "manually" compute this score. This can give further inside on what

the software is actually doing and what is the contribution of each individual on the evaluation of the

treatment.

2.1 Extracting the contribution of each pair to the statistic

The net treatment benefit or the win ratio statistics can be expressed as a sum of a score over all pairs of

patients. The argument keep.pairScore enables to export the score relative to each pair in the output

of BuyseTest:

form <- trt ∼ tte(time, threshold = 20, status = "status") + cont(karno)

BT.keep <- BuyseTest(form,

data = veteran, keep.pairScore = TRUE,

trace = 0, method.inference = "none")

The method getPairScore can then be used to extract the contribution of each pair. For instance the

following code extracts the contribution for the first endpoint:

getPairScore(BT.keep, endpoint = 1)

Key: <index.Exp, index.Pl>

index.Pl index.Exp favorable unfavorable neutral uninf weight

<num> <num> <num> <num> <num> <num> <num>

1: 1 70 1 0 0 0 1

2: 2 70 1 0 0 0 1

3: 3 70 1 0 0 0 1

4: 4 70 1 0 0 0 1

5: 5 70 1 0 0 0 1

4688: 65 137 0 1 0 0 1

4689: 66 137 0 1 0 0 1

4690: 67 137 0 1 0 0 1

4691: 68 137 0 1 0 0 1

4692: 69 137 0 1 0 0 1

Each line corresponds to different comparison between a pair from the control arm and the treatment

arm. The column strata store to which strata the pair belongs (first, second, . . .). The columns favorable,

unfavorable, neutral, uninformative contains the result of the comparison, e.g. the first pair was classified

as favorable while the last was classified as favorable with a weight of 1. The second and third columns

indicates the rows in the original dataset corresponding to the pair:

veteran[c(70,1),]

id trt celltype time status karno diagtime age prior

70 70 Exp squamous 999 1 90 12 54 10

1 1 Pl squamous 72 1 60 7 69 0

24

For the first pair, the event was observed for both observations and since 999 > 72 + 20 the pair is rated

favorable. Substracting the average probability of the pair being favorable minus the average probability

of the pair being unfavorable:

getPairScore(BT.keep, endpoint = 1)[, mean(favorable) - mean(unfavorable)]

[1] -0.08765836

gives the net treatment benefit in favor of the treatment for the first endpoint:

BT.keep

endpoint threshold delta Delta

time 20 -0.0877 -0.0877

karno -0.0133 -0.1009

More examples and explanation can be found in the documentation of the method getPairScore.

2.2 Extracting the survival probabilities

When using scoring.rule equals "Peron", survival probabilities at event time, and event times +/-

threshold in the control and treatment arms are used to score the pair. Setting keep.survival to TRUE

and precompute to FALSE in BuyseTest.options enables to export the survival probabilities in the output

of BuyseTest:

BuyseTest.options(keep.survival = TRUE, precompute = FALSE)

BT.keep2 <- BuyseTest(trt ∼ tte(time, threshold = 20, status = "status") + cont(karno),

data = veteran, keep.pairScore = TRUE, scoring.rule = "Peron",

trace = 0, method.inference = "none")

The method getSurvival can then be used to extract these survival probabilities. For instance the

following code extracts the survival for the first endpoint:

outSurv <- getSurvival(BT.keep2, endpoint = 1, strata = 1)

str(outSurv)

List of 5

$ survTimeC: num [1:69, 1:13] 72 411 228 126 118 10 82 110 314 100 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr [1:13] "time" "survivalC-threshold" "survivalC_0" "survivalC+threshold" ...

$ survTimeT: num [1:68, 1:13] 999 112 87 231 242 991 111 1 587 389 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr [1:13] "time" "survivalC-threshold" "survivalC_0" "survivalC+threshold" ...

$ survJumpC: num [1:57, 1:6] 3 4 7 8 10 11 12 13 16 18 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr [1:6] "time" "survival" "dSurvival" "index.survival" ...

25

$ survJumpT: num [1:51, 1:6] 1 2 7 8 13 15 18 19 20 21 ...

..- attr(*, "dimnames")=List of 2

.. ..$: NULL

.. ..$: chr [1:6] "time" "survival" "dSurvival" "index.survival" ...

$ lastSurv : num [1:2] 0 0

2.2.1 Computation of the score with only one censored event

Let’s look at pair 91:

getPairScore(BT.keep2, endpoint = 1, rm.withinStrata = FALSE)[91]

Key: <index.Exp, index.Pl>

index.Pl index.Exp indexWithinStrata.Pl indexWithinStrata.Exp favorable unfavorable

<num> <num> <num> <num> <num> <num>

1: 22 71 22 2 0 0.6950827

neutral uninf weight

<num> <num> <num>

1: 0.3049173 0 1

In the dataset this corresponds to:

veteran[c(22,71),]

id trt celltype time status karno diagtime age prior

22 22 Pl smallcell 97 0 60 5 67 0

71 71 Exp squamous 112 1 80 6 60 0

The observation from the control group is censored at 97 while the observation from the treatment

group has an event at 112. Since the threshold is 20, and (112-20)<97, we know that the pair is not in

favor of the treatment. The formula for probability in favor of the control is Sc(97)
Sc(112+20)

. The survival at the

event time in the censoring group is stored in survTimeC. Since observation 22 is the 22th observation in

the control group:

iSurv <- outSurv$survTimeC[22,]

iSurv

time survivalC-threshold survivalC_0

97.0000000 0.5615232 0.5171924

survivalC+threshold survivalT-threshold survivalT_0

0.4235463 0.4558824 0.3643277

survivalT+threshold index.survivalC-threshold index.survivalC_0

0.2827500 25.0000000 28.0000000

index.survivalC+threshold index.survivalT-threshold index.survivalT_0

33.0000000 27.0000000 32.0000000

index.survivalT+threshold

35.0000000

26

Since we are interested in the survival in the control arm exactly at the event time:

Sc97 <- iSurv["survivalC_0"]

Sc97

survivalC_0

0.5171924

The survival at the event time in the treatment group is stored in survTimeC. Since observation 71 is

the 2nd observation in the treatment group:

iSurv <- outSurv$survTimeT[2,] ## survival at time 112+20

iSurv

time survivalC-threshold survivalC_0

112.0000000 0.5319693 0.4549201

survivalC+threshold survivalT-threshold survivalT_0

0.3594915 0.3801681 0.2827500

survivalT+threshold index.survivalC-threshold index.survivalC_0

0.2827500 27.0000000 32.0000000

index.survivalC+threshold index.survivalT-threshold index.survivalT_0

37.0000000 31.0000000 35.0000000

index.survivalT+threshold

35.0000000

Since we are interested in the survival in the control arm at the event time plus threshold:

Sc132 <- iSurv["survivalC+threshold"]

Sc132

survivalC+threshold

0.3594915

The probability in favor of the control is then:

Sc132/Sc97

survivalC+threshold

0.6950827

2.2.2 Computation of the score with two censored events

When both observations are censored, the formula for computing the probability in favor of treatment or

control involves an integral. This integral can be computed using the function calcIntegralSurv_cpp

that takes as argument a matrix containing the survival and the jumps in survival, e.g.:

head(outSurv$survJumpT)

27

time survival dSurvival index.survival index.dsurvival1 index.dsurvival2

[1,] 1 0.7681159 -0.02941176 12 0 1

[2,] 2 0.7536232 -0.01470588 13 1 2

[3,] 7 0.7388463 -0.02941176 14 2 3

[4,] 8 0.7388463 -0.02941176 14 3 4

[5,] 13 0.7092924 -0.01470588 16 4 5

[6,] 15 0.6945155 -0.02941176 17 5 6

and the starting time of the integration time. For instance, let’s look at pair 148:

getPairScore(BT.keep2, endpoint = 1, rm.withinStrata = FALSE)[148]

Key: <index.Exp, index.Pl>

index.Pl index.Exp indexWithinStrata.Pl indexWithinStrata.Exp favorable unfavorable

<num> <num> <num> <num> <num> <num>

1: 10 72 10 3 0.5058685 0.3770426

neutral uninf weight

<num> <num> <num>

1: 0.1170889 0 1

which corresponds to the observations:

veteran[c(10,72),]

id trt celltype time status karno diagtime age prior

10 10 Pl squamous 100 0 70 6 70 0

72 72 Exp squamous 87 0 80 3 48 0

The probability in favor of the treatment (pF) and control (pUF) can be computed as:

pF = −
1

ST (x)SC(y)

∫
t>y

ST (t + τ)dSC(t)

pUF = −
1

ST (x)SC(y)

∫
t>x

SC(t + τ)dST (t)

where x = 87 and y = 100. To ease the call of calcIntegralScore_cpp we create a warper:

calcInt <- function(...){ ## no need for the functionnal derivative of the score

BuyseTest:::.calcIntegralSurv_cpp(...,

returnDeriv = FALSE,

derivSurv = matrix(0),

derivSurvD = matrix(0))

}

28

and then call it to compute the probabilities:

denom <- as.double(outSurv$survTimeT[3,"survivalT_0"] * outSurv$survTimeC[10,"survivalC_0"])

M <- cbind("favorable" = -calcInt(outSurv$survJumpC, start = 100,

lastSurv = outSurv$lastSurv[2],

lastdSurv = outSurv$lastSurv[1])/denom,

"unfavorable" = -calcInt(outSurv$survJumpT, start = 87,

lastSurv = outSurv$lastSurv[1],

lastdSurv = outSurv$lastSurv[2])/denom)

rownames(M) <- c("lowerBound","upperBound")

M

favorable unfavorable

lowerBound 0.5058685 0.3770426

upperBound 0.5058685 0.3770426

Note: the lower bound is identical to the upper bound as we could estimate the full survival curve:

outSurv$lastSurv

[1] 0 0

29

3 Dealing with missing values or/and right censoring

In presence of censoring or missing values, it is often not be possible to classify all pairs without a model

for the censoring mechanism. The unclassified pairs, called uninformative, have a score of 0 which will

typically bias the estimate of the net net treatment benefit towards 0 5. Consider the following dataset:

set.seed(10)

dt <- simBuyseTest(1e2, latent = TRUE, argsCont = NULL,

argsTTE = list(scale.T = 1/2, scale.C = 1,

scale.censoring.C = 1, scale.censoring.T = 1))

dt[, eventtimeCensoring := NULL]

dt[, status1 := 1]

head(dt)

id treatment eventtimeUncensored eventtime status toxicity eta_toxicity status1

<num> <fctr> <num> <num> <num> <fctr> <num> <num>

1: 1 C 0.2135567 0.2135567 1 yes -0.07945702 1

2: 2 C 0.3422379 0.3422379 1 no 1.18175155 1

3: 3 C 1.3933222 1.3933222 1 no 2.18614406 1

4: 4 C 0.6737702 0.1961599 0 no 0.40617493 1

5: 5 C 0.5642992 0.5642992 1 yes -0.73835910 1

6: 6 C 1.1039218 0.1764950 0 yes -1.95648670 1

where we have the uncensored event times (eventtimeUncensored) as well as the censored event times

(eventtime). The percentage of censored observations is:

100*dt[,mean(status==0)]

[1] 44

We would like to be able to recover the net treatment benefit estimated with the uncensored event

times:

BuyseTest(treatment ∼ tte(eventtimeUncensored, status1, threshold = 0.5),

data = dt,

scoring.rule = "Gehan", method.inference = "none", trace = 0)

endpoint threshold Delta

eventtimeUncensored 0.5 -0.271

using the censored survival times.

5While the power is typically reduced, the type 1 error will still be controled if censoring is at random

30

The BuyseTest function handles missing values via two arguments:

• scoring.rule indicates how pairs involving missing data are compared.

– the Gehan’s scoring rule compares the observed values. If it is not possible to decide whether

one observation has a better endpoint than the other (e.g. because both are right-censoring)

then the paired is scored uninformative.

– the Peron’s scoring rule compares the probabilty of one observation having a better endpoint

than the other given the observed values. This require a model for the censoring distribution.

If the full survival curve can be identified then all pairs can be fully classified otherwise some

of the pair will be partially uninformative.

– the Efron’s scoring rule same as the Peron’s scoring rule except that the survival curve is

extrapolated to 0 when its tail is unknown. Only relevant when using a (stratified) Kaplan-Meier

estimator and no competing risks.

• correction.uninf indicates what to do with the uninformative scores. For instance setting this

argument to TRUE will re-distribute this score to favorable/unfavorable/neutral scores.

The Peron’s scoring rule is the default (and recommanded) approach. It uses a Kaplan Meier estimator

stratified on treatment and GPC strata variable (if any) as survival model. When the last observation

is censored, then part of the survival curve is unknown which can be necessary to score some of the pairs

(especially in presence of a threshold of clinical relevance). One can:

• use a restriction time within the time interval where the survival curve can be estimated for each

group.

• still use the default Peron’s scoring rule: this will lead to uninformative pairs which can be re-

classified based on a lower priority endpoint.

• use the Peron’s scoring rule with another survival model, using parametric assumptions to inform

about the unknown part of the survival curve. This can be achieved via the model.tte argument or

using the Efron’s scoring rule.

• use an add-hoc correction for the uninformative pairs (correction.uninf)

The first two solutions lead to a change of estimand, the first being much more clearly defined than

the second. The last two solutions correspond to make statistical assumptions, the former assumptions

being more explicit than with the later solution.

3.1 Gehan’s scoring rule

In the example, Gehan’s scoring rule:

e.G <- BuyseTest(treatment ∼ tte(eventtime, status, threshold = 0.5),

data = dt, scoring.rule = "Gehan", trace = 0)

model.tables(e.G)

31

endpoint threshold total favorable unfavorable neutral uninf Delta lower.ci

1 eventtime 0.5 100 4.67 14.39 20.44 60.5 -0.0972 -0.1593869

upper.ci p.value

1 -0.03424474 0.002514882

leads to many uninformative pairs (about 60%) and an estimate much closer to 0 than the truth.

3.2 Peron’s scoring rule

In the example, Peron’s scoring rule:

e.P <- BuyseTest(treatment ∼ tte(eventtime, status, threshold = 0.5),

data = dt, scoring.rule = "Peron", trace = 0)

model.tables(e.P)

endpoint threshold total favorable unfavorable neutral uninf Delta lower.ci

1 eventtime 0.5 100 11.1737 43.33707 44.12373 1.365504 -0.3216337 -0.4584262

upper.ci p.value

1 -0.1699543 5.385074e-05

leads to no uninformative pairs. Indeed the last observation in each group is an (uncensored) event:

dt[,.SD[which.max(eventtime)],by="treatment"]

treatment id eventtimeUncensored eventtime status toxicity eta_toxicity status1

<fctr> <num> <num> <num> <num> <fctr> <num> <num>

1: C 72 2.668629 2.668629 1 yes -1.9256436 1

2: T 154 1.674053 1.588657 0 yes -0.8647272 1

so the full survival curve could be identified. As a result the estimate is very close to the truth.

Note 1: the censoring model can be specified by first fitting a survival model (prodlim or survreg) for

the survival time:

library(prodlim)

e.prodlim <- prodlim(Hist(eventtime, status) ∼ treatment, data = dt)

Then passing the model to the BuyseTest via the model.tte argument:

e.P1 <- BuyseTest(treatment ∼ tte(eventtime, status, threshold = 0.5),

model.tte = e.prodlim,

data = dt, scoring.rule = "Peron", trace = 0)

model.tables(e.P1)

endpoint threshold total favorable unfavorable neutral uninf Delta lower.ci

1 eventtime 0.5 100 11.1737 43.33707 44.12373 1.365504 -0.3216337 -0.4584262

upper.ci p.value

1 -0.1699543 5.385074e-05

32

When the dataset used to fit the survival model match the one used to run the GPC procedure, the

overall uncertainty will be computed. Otherwise:

dt2 <- dt[order(dt$eventtime)]

e.P2 <- BuyseTest(treatment ∼ tte(eventtime, status, threshold = 0.5),

model.tte = prodlim(Hist(eventtime, status) ∼ treatment, data = dt2),

data = dt, scoring.rule = "Peron", trace = 0)

model.tables(e.P2)

Uncertainty related to the estimation of the survival probabilities is ignored.

Consider adding an attribute "iidNuisance" to the argument ’model.tte’ taking value TRUE to change this

endpoint threshold total favorable unfavorable neutral uninf Delta lower.ci

1 eventtime 0.5 100 11.1737 43.33707 44.12373 1.365504 -0.3216337 -0.4187087

upper.ci p.value

1 -0.2172912 6.570106e-09

the survival probabilities will assumed to be known with infinite precision and only the uncertainty of

the GPC procedure will be considered. Add-hoc modification of the data can be used to obtain ’conser-

vative’ estimates when considering a single endpoint, e.g.:

dt2[, last := (max(eventtime)==eventtime), by = "treatment"]

survival stays constant after end of follow-up

dt2[treatment=="C" & last == TRUE, c("eventtime","status") := .(max(dt2$eventtime)+1,1)]

survival drop to 0 after end of follow-up

dt2[treatment=="T" & last == TRUE, status := 1]

modified Kaplan Meier estimator

e.prodlim2 <- prodlim(Hist(eventtime, status) ∼ treatment, data = dt2)

attr(e.prodlim2, "iidNuisance") <- TRUE

run GPC

e.P3 <- BuyseTest(treatment ∼ tte(eventtime, status, threshold = 0.5),

model.tte = e.prodlim2,

data = dt, scoring.rule = "Peron", trace = 0)

model.tables(e.P3) ## even more unfavorable to treatment

endpoint threshold total favorable unfavorable neutral uninf Delta lower.ci

1 eventtime 0.5 100 11.1737 43.97856 44.84774 0 -0.3280486 -0.4378751

upper.ci p.value

1 -0.2085751 2.25273e-07

Note 2: it is possible to use a parametric model via the survreg function:

library(survival)

e.survreg <- survreg(Surv(eventtime, status) ∼ treatment, data = dt,

dist = "weibull")

Then passing the model to the BuyseTest via the model.tte argument:

33

e.P3 <- BuyseTest(treatment ∼ tte(eventtime, status, threshold = 0.5),

model.tte = e.survreg,

data = dt, scoring.rule = "Peron", trace = 0)

model.tables(e.P3)

endpoint threshold total favorable unfavorable neutral uninf Delta lower.ci

1 eventtime 0.5 100 11.65444 34.18937 54.14472 0.01147085 -0.2253494 -0.3476693

upper.ci p.value

1 -0.09548719 0.0007624659

Internally the survival curve is discretized using 1000 points starting from survival = 1 to survival =

0.001 (this is why there is a non-0 but small percentage of uninformative pairs). This is performed internally

by applying the BuyseTTEM method. Another discretisation can be obtained by calling BuyseTTEM with

another value for the n.grid argument:

e.TTEM <- BuyseTTEM(e.survreg, treatment = "treatment", iid = TRUE, n.grid = 2500)

str(e.TTEM$peron$jumpSurvHaz[[1]][[1]])

’data.frame’: 2500 obs. of 3 variables:

$ index.jump: logi NA NA NA NA NA NA ...

$ time.jump : num 0 0.000307 0.000632 0.000964 0.001301 ...

$ survival : num 1 1 0.999 0.999 0.998 ...

and then passing to BuyseTest:

e.P4 <- BuyseTest(treatment ∼ tte(eventtime, status, threshold = 0.5),

model.tte = e.TTEM,

data = dt, scoring.rule = "Peron", trace = 0)

model.tables(e.P4)

endpoint threshold total favorable unfavorable neutral uninf Delta lower.ci

1 eventtime 0.5 100 11.64894 34.18631 54.16019 0.004558007 -0.2253737 -0.3476861

upper.ci p.value

1 -0.09551899 0.0007609754

It is therefore possible to extend the approach to other model by defining an appropriate BuyseTTEM

method. Looking at the code use for defining BuyseTTEM.survreg can be helpful.

3.3 Correction via re-weighting

The weights of the non-informative pairs is redistributed to the informative pairs. This is only a good

strategy when there are no neutral pairs or there are no lower priority endpoints. This gives an estimate

much closer to the true net treatment benefit:

BT <- BuyseTest(treatment ∼ tte(eventtime, status, threshold = 0.5),

data = dt, keep.pairScore = TRUE, trace = 0,

scoring.rule = "Gehan", method.inference = "none", correction.uninf = 2)

summary(BT)

34

Generalized pairwise comparisons with 1 endpoint

- statistic : net treatment benefit (delta: endpoint specific, Delta: global)

- treatment groups: T (treatment) vs. C (control)

- censored pairs : deterministic score or uninformative

- uninformative pairs: no contribution, their weight is passed to the informative pairs using IPCW

- results

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta

eventtime 0.5 100 11.82 36.43 51.75 0 -0.2461

We can also see that no pair is finally classified as non informative. To get some inside about the

correction we can look at the scores of the pairs:

iScore <- getPairScore(BT, endpoint = 1)

To get a synthetic view, we only look at the unique favorable/unfavorable/neutral/uniformative re-

sults:

iScore[,.SD[1],

.SDcols = c("favorableC","unfavorableC","neutralC","uninfC"),

by = c("favorable","unfavorable","neutral","uninf")]

favorable unfavorable neutral uninf favorableC unfavorableC neutralC uninfC

<num> <num> <num> <num> <num> <num> <num> <num>

1: 0 0 1 0 0.000000 0.000000 2.531646 0

2: 0 1 0 0 0.000000 2.531646 0.000000 0

3: 0 0 0 1 0.000000 0.000000 0.000000 0

4: 1 0 0 0 2.531646 0.000000 0.000000 0

We can see that the favorable/unfavorable/neutral pairs have seen their contribution multiplied by:

iScore[,1/mean(favorable + unfavorable + neutral)]

[1] 2.531646

i.e. the inverse probability of being informative.

3.4 Correction at the pair level

Another possible correction is to distribute the non-informative weight of a pair to the average favor-

able/unfavorable/neutral probability observed on the sample:

BT <- BuyseTest(treatment ∼ tte(eventtime, status, threshold = 0.5),

data = dt, keep.pairScore = TRUE, trace = 0,

scoring.rule = "Gehan", method.inference = "none", correction.uninf = TRUE)

summary(BT)

35

Generalized pairwise comparisons with 1 endpoint

- statistic : net treatment benefit (delta: endpoint specific, Delta: global)

- treatment groups: T (treatment) vs. C (control)

- censored pairs : deterministic score or uninformative

- uninformative pairs: score equals the averaged score of all informative pairs

- results

endpoint threshold total(%) favorable(%) unfavorable(%) neutral(%) uninf(%) Delta

eventtime 0.5 100 11.82 36.43 51.75 0 -0.2461

Looking at the scores of the pairs:

iScore <- getPairScore(BT, endpoint = 1)

iScore[,.SD[1],

.SDcols = c("favorableC","unfavorableC","neutralC","uninfC"),

by = c("favorable","unfavorable","neutral","uninf")]

favorable unfavorable neutral uninf favorableC unfavorableC neutralC uninfC

<num> <num> <num> <num> <num> <num> <num> <num>

1: 0 0 1 0 0.0000000 0.0000000 1.0000000 0

2: 0 1 0 0 0.0000000 1.0000000 0.0000000 0

3: 0 0 0 1 0.1182278 0.3643038 0.5174684 0

4: 1 0 0 0 1.0000000 0.0000000 0.0000000 0

we can see that the corrected probability have not changed for the informative pairs, but for the

non-informative they have been set to:

iScore[, .(favorable = weighted.mean(favorable, w = 1-uninf),

unfavorable = weighted.mean(unfavorable, w = 1-uninf),

neutral = weighted.mean(neutral, w = 1-uninf))]

favorable unfavorable neutral

<num> <num> <num>

1: 0.1182278 0.3643038 0.5174684

3.5 Note on the use of the corrections

As mentioned in Péron et al. (2021), the corrections (at the pair level or IPCW) are assumes that un-

informative pairs would on average behave like informative pairs. This is typically the case under the

proportional hazard assumption. However that may not be the case with other distributions, e.g.:

set.seed(10);n <- 250;

df <- rbind(data.frame(group = "T1", time = rweibull(n, shape = 1, scale = 2), status = 1),

data.frame(group = "T2", time = rweibull(n, shape = 2, scale = 1.8), status = 1))

df$censoring <- runif(NROW(df),0,2)

df$timeC <- pmin(df$time,df$censoring)

df$statusC <- as.numeric(df$time<=df$censoring)

plot(prodlim(Hist(time,status)∼group, data = df)); title("complete data");

plot(prodlim(Hist(timeC,statusC)∼group, data = df)); title("right-censored data");

36

Time

S
u
rv

iv
a
l
p
ro

b
a
b
ili

ty

0 2 4 6 8

0
 %

2
5
 %

5
0
 %

7
5
 %

1
0
0
 %

group

T1

T2

complete data

Time

S
u
rv

iv
a
l
p
ro

b
a
b
ili

ty
0.0 0.5 1.0 1.5 2.0

0
 %

2
5
 %

5
0
 %

7
5
 %

1
0
0
 %

group

T1

T2

right−censored data

Here the net treatment benefit that we would have estimated with complete data:

BuyseTest.options(method.inference = "none")

e.ref <- BuyseTest(group ∼ tte(time,status), data = df, trace = FALSE)

s.ref <- model.tables(e.ref, column = c("favorable","unfavorable","neutral","uninf","Delta"))

s.ref

favorable unfavorable neutral uninf Delta

1 50.2048 49.7952 0 0 0.004096

can be taken as a reference. Violation of the assumption will in this example have a substantial impact

and lead to a worse estimate with the correction:

e.correction <- BuyseTest(group ∼ tte(timeC,statusC), data = df, trace = FALSE, correction.

uninf = TRUE)

s.correction <- model.tables(e.correction, column = c("favorable","unfavorable","neutral","

uninf","Delta"))

Warning message:

In .BuyseTest(envir = envirBT, iid = outArgs$iid, method.inference = "none", :

Some of the survival curves for endpoint(s) "timeC" are unknown beyond a survival of 0.25.

The correction of uninformative pairs assume that uninformative pairs would on average behave like informative

This can be a strong assumption and have substantial impact when the tail of the survival curve is unknown.

than without:

37

e.Peron <- BuyseTest(group ∼ tte(timeC,statusC), data = df, trace = FALSE)

s.Peron <- model.tables(e.Peron, column = c("favorable","unfavorable","neutral","uninf","Delta

"))

rbind("reference" = s.ref,

"no correction" = s.Peron,

"correction" = s.correction)

favorable unfavorable neutral uninf Delta

reference 50.20480 49.79520 0 0.00000 0.00409600

no correction 49.09253 39.74775 0 11.15972 0.09344778

correction 55.25931 44.74069 0 0.00000 0.10518628

38

4 Simulating data using simBuyseTest

You can simulate data with the simBuyseTest function. For instance the following code simulates data

for 5 individuals in the treatment arm and 5 individuals in the control arm:

set.seed(10)

simBuyseTest(n.T = 5, n.C = 5)

id treatment eventtime status toxicity score

<int> <fctr> <num> <num> <fctr> <num>

1: 1 C 0.60539304 0 yes -1.85374045

2: 2 C 0.31328027 1 yes -0.07794607

3: 3 C 0.03946623 0 yes 0.96856634

4: 4 C 0.32147489 1 yes 0.18492596

5: 5 C 1.57044952 0 yes -1.37994358

6: 6 T 0.29069131 0 no 1.10177950

7: 7 T 0.19522131 0 yes 0.75578151

8: 8 T 0.04640668 0 yes -0.23823356

9: 9 T 0.05277335 1 yes 0.98744470

10: 10 T 0.43062009 1 yes 0.74139013

By default a categorical, continuous and time to event outcome are generated independently. You can

modify their distribution via the arguments argsBin, argsCont, argsTTE. For instance the following code

simulates two continuous variables with mean 5 in the treatment arm and 10 in the control arm all with

variance 1:

set.seed(10)

argsCont <- list(mu.T = c(5,5), mu.C = c(10,10),

sigma.T = c(1,1), sigma.C = c(1,1),

name = c("tumorSize","score"))

dt <- simBuyseTest(n.T = 5, n.C = 5,

argsCont = argsCont)

dt

id treatment eventtime status toxicity tumorSize score

<int> <fctr> <num> <num> <fctr> <num> <num>

1: 1 C 0.1805891 0 yes 11.086551 8.564486

2: 2 C 0.1702538 1 yes 9.237455 10.362087

3: 3 C 0.2621793 1 no 9.171337 8.240913

4: 4 C 0.2959301 0 no 10.834474 9.675456

5: 5 C 0.4816549 1 yes 9.032348 9.348437

6: 6 T 0.6446131 1 no 5.089347 6.101780

7: 7 T 0.7372264 1 yes 4.045056 5.755782

8: 8 T 0.7213402 0 yes 4.804850 4.761766

9: 9 T 0.1580651 1 yes 5.925521 5.987445

10: 10 T 0.2212117 0 yes 5.482979 5.741390

This functionality is based on the sim function of the lava package.

39

5 Power calculation using powerBuyseTest

The function powerBuyseTest can be used to perform power calculation, i.e., estimate the probability of

rejecting a null hypothesis under a specific generative mechanism. The user therefore need to specify:

• the generative mechanism via a function - argument sim

• the null hypothesis - argument null

• the sample size(s) for the which the power should be computed - argument sample.size

Consider the following generative mechanism where the outcome follows a Student’s t-distribution in

the treatment and control group, with same variance and degrees of freedom but different mean:

simFCT <- function(n.C, n.T){

out <- rbind(cbind(Y=stats::rt(n.C, df = 5), group=0),

cbind(Y=stats::rt(n.T, df = 5) + 1/2, group=1))

return(data.table::as.data.table(out))

}

set.seed(10)

simFCT(101,101)

Y group

<num> <num>

1: 0.02241932 0

2: -1.07273566 0

3: 0.76072274 0

4: -0.25812356 0

5: 0.97207866 0

198: 1.82349375 1

199: -0.98560076 1

200: 1.48143637 1

201: 3.69314316 1

202: 0.96244416 1

We then define the null hypothesis:

null <- c("netBenefit" = 0)

Naming the value is important since that will indicate which statistic should be used (here the net

treatment benefit). We can assess the power of a test based on the net treatment benefit using the following

syntax:

powerW <- powerBuyseTest(sim = simFCT, method.inference = "u-statistic", null = null,

sample.size = c(5,10,20,30,50,100),

formula = group ∼ cont(Y),

n.rep = 1000, seed = 10, cpus = 6, trace = 0)

40

And use the summary method to display the power (column rejection.rate):

summary(powerW)

Simulation study with Generalized pairwise comparison

with 1000 samples

- net benefit statistic (null hypothesis Delta=0)

endpoint threshold n.T n.C mean.estimate sd.estimate mean.se rejection.rate

Y 1e-12 5 5 0.2484 0.359 0.3395 0.069

10 10 0.2471 0.2551 0.2464 0.137

20 20 0.2444 0.1746 0.1757 0.221

30 30 0.243 0.1436 0.1437 0.365

50 50 0.2438 0.1114 0.1113 0.557

100 100 0.2458 0.0804 0.0787 0.865

n.T : number of observations in the treatment group

n.C : number of observations in the control group

mean.estimate: average estimate over simulations

sd.estimate : standard deviation of the estimate over simulations

mean.se : average estimated standard error of the estimate over simulations

rejection : frequency of the rejection of the null hypothesis over simulations

(standard error: H-projection of order 1| p-value: after transformation)

It is also possibly to use an asymptotic approximation to derive a approximate sample size satisfying

a specific type 1 and type 2 error rate:

nW <- powerBuyseTest(sim = simFCT, method.inference = "u-statistic",

power = 0.8, max.sample.size = 1000,

formula = group ∼ cont(Y), null = c("netBenefit" = 0),

n.rep = c(1000,10), seed = 10, cpus = 5, trace = 0)

This procedure is inspired from the procedure presented by Brunner et al. (2018) in section 3.8.2.2.

In short, several ’large’ datasets are generated and analyzed using GPC to approximate the statistic of

interest (∆) and its asymptotic variance (σ2). The sample size needed to achieve the requested power

(1 − β) and the requested type 1 error (α) is then deduce, give a dataset, according to the equation

N = σ2 (u1−α/2+u1−β)
2

∆2 where ux denotes the x-quantile of the normal distribution. The estimated sample

size is then the average calculated sample size across dataset. The argument max.sample.size specifies

the number of observation per group in the ’large’ dataset (here 1000 per group) and the second element of

the argument n.rep specifies the number of datasets (here 10). The quality of the approximation, as well

as the computation time, thus improves when increasing max.sample.size and n.rep[2]. The achieved

power with the estimated sample size can be output as usual using the summary method:

summary(nW)

Sample size calculation with Generalized pairwise comparison

for a power of 0.8 and type 1 error rate of 0.05

41

- estimated sample size (mean [min;max]): 89 [60;145] controls

89 [60;145] treated

- net benefit statistic (null hypothesis Delta=0)

endpoint threshold n.T n.C mean.estimate sd.estimate mean.se rejection.rate

Y 1e-12 89 89 0.2452 0.0854 0.0834 0.806

n.T : number of observations in the treatment group

n.C : number of observations in the control group

mean.estimate: average estimate over simulations

sd.estimate : standard deviation of the estimate over simulations

mean.se : average estimated standard error of the estimate over simulations

rejection : frequency of the rejection of the null hypothesis over simulations

(standard error: H-projection of order 1| p-value: after transformation)

42

6 Modifying default options

The BuyseTest.options method enable to get and set the default options of the BuyseTest function. For

instance, the default option for trace is:

BuyseTest.options("trace")

$trace

[1] 2

To change the default option to 0 (i.e. no output) use:

BuyseTest.options(trace = 0)

To change what the results output by the summary function use:

BuyseTest.options(summary.display = list(c("endpoint","threshold","delta","Delta","information

(%)")))

summary(BT)

Generalized pairwise comparisons with 1 endpoint

- statistic : net benefit (delta: endpoint specific, Delta: global)

- null hypothesis : Delta == 0

- treatment groups: T (treatment) vs. C (control)

- censored pairs : deterministic score or uninformative

- uninformative pairs: score equals the averaged score of all informative pairs

- results

endpoint threshold Delta information(%)

eventtime 0.5 -0.2461 100

To restore the original default options do:

BuyseTest.options(reinitialise = TRUE)

43

References

Ajufo, E., Nayak, A., and Mehra, M. R. (2023). Fallacies of using the win ratio in cardiovascular trials:

challenges and solutions. Basic to Translational Science, 8(6):720–727.

Brunner, E., Bathke, A. C., and Konietschke, F. (2018). Rank and pseudo-rank procedures for independent

observations in factorial designs. Springer.

Buyse, M. (2010). Generalized pairwise comparisons of prioritized outcomes in the two-sample problem.

Statistics in medicine, 29(30):3245–3257.

Buyse, M., Verbeeck, J., Saad, E. S., De Backer, M., Deltuvaite-Thomas, V., and Molenberghs, G. (2025).

Handbook of Generalized Pairwise Comparisons Methods for Patient-Centric Analysis. Chapman & Hall.

Dong, G., Qiu, J., Wang, D., and Vandemeulebroecke, M. (2018). The stratified win ratio. Journal of

biopharmaceutical statistics, 28(4):778–796.

Ozenne, B., Budtz-Jørgensen, E., and Péron, J. (2021). The asymptotic distribution of the net benefit

estimator in presence of right-censoring. Statistical methods in medical research, 30(11):2399–2412.

Péron, J., Buyse, M., Ozenne, B., Roche, L., and Roy, P. (2018). An extension of generalized pairwise

comparisons for prioritized outcomes in the presence of censoring. Statistical methods in medical research,

27(4):1230–1239.

Péron, J., Idlhaj, M., Maucort-Boulch, D., Giai, J., Roy, P., Collette, L., Buyse, M., and Ozenne, B.

(2021). Correcting the bias of the net benefit estimator due to right-censored observations. Biometrical

Journal, 63(4):893–906.

Piffoux, M., Ozenne, B., De Backer, M., Buyse, M., Chiem, J.-C., and Péron, J. (2024). Restricted net

treatment benefit in oncology. Journal of Clinical Epidemiology, 170:111340.

Verbeeck, J., Spitzer, E., de Vries, T., van Es, G., Anderson, W., Van Mieghem, N., Leon, M., Molenberghs,

G., and Tijssen, J. (2019). Generalized pairwise comparison methods to analyze (non) prioritized

composite endpoints. Statistics in medicine.

44

	Performing generalized pairwise comparisons (GPC)
	Displaying the results
	What about other summary statistics?
	Stratified GPC
	Standardization
	Using multiple endpoints
	Statistical inference
	What if smaller is better?
	Stopping comparison for neutral pairs
	Is multiple testing a concern with GPC?

	Getting additional inside: looking at the pair level
	Extracting the contribution of each pair to the statistic
	Extracting the survival probabilities
	Computation of the score with only one censored event
	Computation of the score with two censored events

	Dealing with missing values or/and right censoring
	Gehan's scoring rule
	Peron's scoring rule
	Correction via re-weighting
	Correction at the pair level
	Note on the use of the corrections

	Simulating data using simBuyseTest
	Power calculation using powerBuyseTest
	Modifying default options

