Package 'BRACE'

March 6, 2023
Type Package
Title Bias Reduction Through Analysis of Competing Events (BRACE)
Version 0.1.0
Maintainer Tuo Lintulin@health.ucsd.edu
Description Adjusting the bias due to residual confounding (often called
treatment selection bias) in estimating the treatment effect in a
proportional hazard model, as described in Williamson et al.
(2022) doi:10.1158/1078-0432.ccr-21-2468.
License GPL (>=3)
Depends survival, survminer
Suggests knitr, testthat (>= 3.0.0)
Config/testthat/edition 3
Encoding UTF-8
RoxygenNote 7.2.1
VignetteBuilder knitr
NeedsCompilation no
Author Tuo Lin [aut, cre],
Jingjing Zou [aut],
Loren Mell [aut]
Repository CRAN
Date/Publication 2023-03-06 13:50:13 UTC

R topics documented:

brace 2
gendat 4
gendat2 5
Index 6

Description

brace is used to estimate the treatment effect with adjusted confounders on the composite hazard for primary or competing events, and adjust for bias from residual confounding in non-randomized data by BRACE method

Usage

brace(
ftime, fstatus, covs = NA, trt,
failcode $=1$,
cencode $=0$,
PS = 0,
$B=1000$
)

Arguments

ftime	vector of failure/censoring times
fstatus	vector with a unique code for each failure type and a separate code for censored observations (default is primary event $=1$, competing event $=2$, censored $=0)$ matrix (nobs x ncovs) of fixed covariates. If no covariates, set covs = NA (default is NA)
covs	vector of treatment indicator (1 for treatment group) trt
failcode	code of fstatus that denotes the failure type of interest cencode of fstatus that denotes censored observations
PS	whether to use propensity score method for adjusting the confounding effect (1 for propensity score method, default is 0) bootstrap sample size for calculating the Confidence interval, default is 1000
B	

Value

a list of class brace, with components:
\$Summary summary table of BRACE method
\$‘BRACE HR Distribution‘
the estimated regression coefficients in each bootstrap sample
\$‘Omega Estimate‘
estimate of relative hazards for primary events vs. combined events

References

Williamson, Casey W., et al. "Bias Reduction through Analysis of Competing Events (BRACE) Correction to Address Cancer Treatment Selection Bias in Observational Data." Clinical Cancer Research 28.9 (2022): 1832-1840.

Examples

```
nsims = 1; nobs = 1500
f = 0.5; g = 0.333; b = 8; w1 = w2 = 0.667
theta1 = 0.5; theta2 = 1; omegaplus = 1; k3 = 0.333
sim1 = gendat(nsims, nobs,f,g,b,w1,w2,omegaplus,theta1, theta2,k3)
ftime = sim1$time
fstatus = sim1$pfs_ci
covs = NA
trt = sim1$group
braceoutput = brace(ftime, fstatus, covs, trt, PS=0, B=10)
nsims = 1; nobs = 1500
f1 = f2 = 0.5; g = 0.333; b1 = 8; b2 = 4; w1 = w2 = 0.667
theta1 = 0.5; theta2 = 1; omegaplus = 1; k3 = 0.333
sim1 = gendat2(nsims,nobs,f1,f2,g,b1,b2,w1,w2,omegaplus,theta1,theta2,k3)
ftime = sim1$time
fstatus = sim1$pfs_ci
covs = sim1$factor2
trt = sim1$group
braceoutput = brace(ftime, fstatus, covs, trt, PS=1, B=10)
```


Description

generating the simulation data to apply in brace

Usage

gendat(nsims, nobs, f, g, b, w1, w2, omegaplus, theta1, theta2, k3)

Arguments

nsims number of simulation datasets
nobs number of observations for one dataset
f parameter for generating unmeasured binary confounder
g parameter for generating group assignment
b confounder effect on group assignment
w1 shape parameter in generating survival time for event 1 from weibull distribution
w2 shape parameter in generating survival time for event 2 from weibull distribution
omegaplus multiplier on the baseline hazard for event 1
theta1 multiplier on the baseline hazard for event 1
theta2 multiplier on the baseline hazard for event 2
k3 multiplier on the baseline hazard for event 2

Value

a matrix of nsims* nobs row, which consists of nsims datasets

Examples

```
nsims = 1; nobs = 1500
f = 0.5; g = 0.333; b = 8; w1 = w2 = 0.667
theta1 = 0.5; theta2 = 1; omegaplus = 1; k3 = 0.333
sim1 = gendat(nsims, nobs,f,g,b,w1,w2,omegaplus,theta1, theta2,k3)
```

gendat2 simulation data generating function (Adding a measured confounder)

Description

generating the simulation data to apply in brace

Usage

gendat2(nsims, nobs, f1, f2, g, b1, b2, w1, w2, omegaplus, theta1, theta2, k3)

Arguments

nsims number of simulation datasets
nobs number of observations for one dataset
f1 parameter for generating unmeasured binary confounder
f2 parameter for generating measured binary confounder
$\mathrm{g} \quad$ parameter for generating group assignment
b1 unmeasured confounder effect on group assignment
b2 measured confounder effect on group assignment
w1 shape parameter in generating survival time for event 1 from weibull distribution
w2 shape parameter in generating survival time for event 2 from weibull distribution
omegaplus multiplier on the baseline hazard for event 1
theta1 multiplier on the baseline hazard for event 1
theta2 multiplier on the baseline hazard for event 2
k3 multiplier on the baseline hazard for event 2

Value

a matrix of nsims*nobs row, which consists of nsims datasets

Examples

```
nsims = 1; nobs = 1500
f1 = f2 = 0.5; g = 0.333; b1 = 8; b2 = 4; w1 = w2 = 0.667
theta1 = 0.5; theta2 = 1; omegaplus = 1; k3 = 0.333
sim1 = gendat2(nsims,nobs,f1,f2,g,b1,b2,w1,w2,omegaplus,theta1,theta2,k3)
```


Index

brace, 2
gendat, 4
gendat2, 5

