BMEmapping: Spatial Interpolation using Bayesian Maximum Entropy (BME)

Provides an accessible and robust implementation of core BME methodologies for spatial prediction. It enables the systematic integration of heterogeneous data sources including both hard data (precise measurements) and soft interval data (bounded or uncertain observations) while incorporating prior knowledge and supporting variogram-based spatial modeling. The BME methodology is described in Christakos (1990) <doi:10.1007/BF00890661> and Serre and Christakos (1999) <doi:10.1007/s004770050029>.

Version: 0.3.0
Depends: R (≥ 3.5)
Imports: mvtnorm
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0)
Published: 2025-05-13
Author: Kinspride Duah ORCID iD [aut, cre, cph], Yan Sun [aut]
Maintainer: Kinspride Duah <kinspride2020 at gmail.com>
BugReports: https://github.com/KinsprideDuah/BMEmapping/issues
License: MIT + file LICENSE
URL: https://github.com/KinsprideDuah/BMEmapping
NeedsCompilation: no
Materials: README NEWS
CRAN checks: BMEmapping results

Documentation:

Reference manual: BMEmapping.pdf
Vignettes: Introduction to BMEmapping (source, R code)

Downloads:

Package source: BMEmapping_0.3.0.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): not available, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=BMEmapping to link to this page.