## ----include = FALSE---------------------------------------------------------- # knitr::opts_chunk$set( # collapse = TRUE # ) ## ----setup, echo = FALSE------------------------------------------------------ library(BFF) library(BSDA) ## ----------------------------------------------------------------------------- # Define the density function density_function <- function(lambda, tau2, r) { coef <- (lambda^2)^r / ((2 * tau2)^(r + 0.5) * gamma(r + 0.5)) exp_term <- exp(-lambda^2 / (2 * tau2)) return(coef * exp_term) } # Define omega and n omega <- 0.5 n <- 50 # Define the range for lambda lambda_range <- seq(-10, 10, length.out = 1000) # Define the values of r to plot r_values <- c(1, 2, 3, 5, 10) # Define colors for the different r values colors <- rainbow(length(r_values)) # Plot the densities using base R plotting functions plot(NULL, xlim = c(-10, 10), xlab = expression(lambda), ylab = "Density", main = "Density for varying r", ylim = c(0, 0.4)) # Add lines for each value of r for (i in seq_along(r_values)) { r <- r_values[i] tau2 <- (n * omega^2) / (2 * r) densities <- sapply(lambda_range, density_function, tau2 = tau2, r = r) lines(lambda_range, densities, col = colors[i], lwd = 2) } # Add a legend legend("topright", legend = paste("r =", r_values), col = colors, lwd = 2) ## ----------------------------------------------------------------------------- tBFF = t_test_BFF(t_stat = 2.5, n = 50, one_sample = TRUE) tBFF # plot the results plot(tBFF) # now an example with different types of settings tBFF_twosample = t_test_BFF(t_stat = 2.5, n1 = 50, n2 = 14, one_sample = FALSE) tBFF_twosample # plot the results plot(tBFF_twosample) # repeat the above with r = 5 tBFF_r5 = t_test_BFF(t_stat = 2.5, n = 50, one_sample = TRUE, r = 5) tBFF_r5 # plot the results plot(tBFF_r5) # now an example with different types of settings tBFF_twosample_r5 = t_test_BFF(t_stat = 2.5, n1 = 50, n2 = 14, one_sample = FALSE, r = 5) tBFF_twosample_r5 # plot the results plot(tBFF_twosample_r5)