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Abstract

Agencies are increasingly called upon to implement their natural resource management pro-

grams within an adaptive management (AM) framework. This article provides the back-

ground and motivation for the R package, AMModels. AMModels was developed under R

version 3.2.2. The overall goal of AMModels is simple: To codify knowledge in the form of

models and to store it, along with models generated from numerous analyses and datasets

that may come our way, so that it can be used or recalled in the future. AMModels facilitates

this process by storing all models and datasets in a single object that can be saved to an

.RData file and routinely augmented to track changes in knowledge through time. Through

this process, AMModels allows the capture, development, sharing, and use of knowledge

that may help organizations achieve their mission. While AMModels was designed to facili-

tate adaptive management, its utility is far more general. Many R packages exist for creating

and summarizing models, but to our knowledge, AMModels is the only package dedicated

not to the mechanics of analysis but to organizing analysis inputs, analysis outputs, and pre-

serving descriptive metadata. We anticipate that this package will assist users hoping to pre-

serve the key elements of an analysis so they may be more confidently revisited at a later

date.

Introduction andmotivation

The R package, AMModels [1], is a tool for storing models, data, and metadata to facilitate

adaptive management. Agencies are increasingly called upon to implement their natural

resource management programs within an adaptive management (AM) framework [2–5].

Adaptive management is a key initiative for the U.S. Department of Interior, which offers the

following definition [6]:

"Adaptive management promotes flexible decision making that can be adjusted in the face

of uncertainties as outcomes frommanagement actions and other events become better under-

stood. Careful monitoring of these outcomes both advances scientific understanding and helps

adjust policies or operations as part of an iterative learning process. Adaptive management
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also recognizes the importance of natural variability in contributing to ecological resilience

and productivity. It is not a ‘trial and error’ process, but rather emphasizes learning while

doing. Adaptive management does not represent an end in itself, but rather a means to more

effective decisions and enhanced benefits. Its true measure is in how well it helps meet envi-

ronmental, social, and economic goals, increases scientific knowledge, and reduces tensions

among stakeholders."

Williams and Brown [6] explain that this definition emphasizes three key AM principles:

1. Uncertainty about management impacts

2. Iterative learning to reduce uncertainty

3. Improved management as a result of learning.

Models are a crucial part of this process. Natural resource managers are concerned with

understanding the dynamics of a system of interest. The system state at time t is influenced by

external drivers and management actions, which yield the state of the system at time t + 1 (Fig

1).

At the heart of this diagram aremodels, which represent our current understanding of how

a system of interest works. If a system is perfectly understood, a model can perfectly predict

the state of the system at time t + 1, given the state at time t and the environmental and man-

agement forces that act on the system. However, environmental systems are rarely, if ever,

understood with certainty. Sources of uncertainty that are highlighted in Fig 1 include:

1. Environmental Variation (also called aleatory uncertainty)—environmental factors that

have inherent natural variability, such as rainfall and temperature, that affect the system

state. Environmental variation can be better understood by additional study, but additional

study cannot reduce it.

2. Partial Controllability—the uncertainty about how management actions will affect the

system.

3. Structural Uncertainty—uncertainty with the model itself. This may arise when the model

does not adequately reflect the system dynamics and/or when the parameters within a

model are not well understood.

Fig 1. Components of an adaptivemanagement system. Adapted from: National Conservation Training
Center ALC3176; Nichols, Runge, and Johnson.

https://doi.org/10.1371/journal.pone.0188966.g001
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4. Partial Observability—uncertainty that arises when humans cannot observe the system

state perfectly. This, in turn, may contribute to structural uncertainty.

The latter three sources of variation can be reduced by scientific study, and reducing uncer-

tainty may lead to better decision making.

In an idealized adaptive management framework, the state of the system is sufficiently mon-

itored to detect changes of interest. When that state appears to be out of sync with an agency’s

objectives, the agency considers a suite of possible management actions that can move the sys-

tem towards its intended target. The model, though imperfect, is then used to help predict how

each alternative may affect the state, pointing to the action(s) that best achieve agency goals.

The selected management action(s), together with environmental drivers, then move the sys-

tem to system state t + 1, and the process reiterates. A central premise of adaptive management

is that the model of system dynamics can be continually improved with each passing iteration.

Thus, the model of system dynamics changes as our understanding of the system improves [3].

Although the term adaptive management is liberally used in resource management, a large

gap between the theory and the practice of adaptive management can exist [7–13]. Not all nat-

ural resource management problems fall within the adaptive management umbrella, and eluci-

dating shared goals and objectives among stakeholders can be extremely challenging [14,15].

Even if objectives are well defined, in practice it can be difficult to understand how to imple-

ment an adaptive management program that seamlessly integrates data collection, models, and

analysis. To aid at least part of this process, we developed the R package, AMModels, as a vehi-

cle for organizing data, models, and metadata using the open source modeling platform, R

[16]. R can be downloaded from the Comprehensive R Archive Network website (https://cran.

r-project.org/).

Objectives

This paper outlines the R package AMModels, which is foundational to our other AM pack-

ages [17,18]. The overall goal of AMModels is simple: To codify knowledge in the form of

models and to store it, along with models generated from numerous analyses and datasets that

may come our way, so that it can be used for future purposes. AMModels facilitates this pro-

cess by storing all models and datasets in a single object that can be saved to an .RData file and

routinely augmented to track changes in knowledge through time.

We begin by orienting the reader to R models and model outputs, which can be highly vari-

able from package to package and function to function. We illustrate 3 modeling approaches.

First, we analyze plant weight data with the function lm, which produces a linear model whose

output is stored in an S3 object of class lm. Second, we analyze occupancy data of chorus frogs,

which produces an occupancy model whose output is stored in an S4 object of class unmar-

kedFitOccu. Finally, we analyze fictitious apple data using a Bayesian analysis, in which the

model inputs and outputs are not stored in an object with an analysis-specific class. In these

examples, we do not dwell on the methods involved but rather focus on the structure of the

analytical inputs and output. With this background, we then introduce the core functionality

within the package, AMModels, including a Shiny application called AMModel Manager

which enables the use of these functions in user-friendly format.

Models in R

Models come in a rich variety of flavors, but a common flavor is a model that is generated

from a statistical analysis.
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Example 1: Linear models

As an example of a model generated from previous analysis, consider the code from the lm
helpfile featuring plant weights as a function of a treatment. We use this example generically;

in the context of adaptive management, a resource manager may be interested in how a treat-

ment or management action affects a resource of interest (e.g., plant weight). Here, a linear

model is fit to the observed data, where weight is predicted by the treatment effect (group).

Model results are stored in an object of class lm, which is structured as a list with 13 ele-

ments. This can be verified with the str function. A quick way to see hints about the contents

of this object is to use the names function.

# look at the names of the lm components

names(lm.D9)

½1� }coefficients} }residuals} }effects} }rank}

½5� }fitted:values} }assign} }qr} }df:residual}

½9� }contrasts} }xlevels} }call} }terms}

½13� }model}

require(graphics)
# Annette Dobson (1990) 'An Introduction to Generalized Linear
Models'.
# Page 9: Plant Weight Data.
ctl <- c(4.17, 5.58, 5.18, 6.11, 4.5, 4.61, 5.17, 4.53, 5.33, 5.14)
trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)
group <- gl(n = 2, k = 10, length = 20, labels = c("Ctl", "Trt"))
weight <- c(ctl, trt)
# store the data within a dataframe

data <- data.frame(weight, group)
# run the analysis

lm.D9 <- lm(weight ~ group, data = data)
# look at the class of lm.D9
class(lm.D9)
[1] "lm"
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Typically, analytical outputs contain not only the model results, but additional information

regarding the analysis. For example, the data that were input to the analysis are stored in the

list item namedmodel.

It is generally unnecessary to use such list indexing to work with the lm output, as the
authors of the lm function provide numerous functions (methods) for extracting and manipu-

lating content stored in an object of class lm. The names of the methods that work on a partic-

ular class can be displayed with the methods function:

# extract the analysis inputs (data)

lm.D9["model"]
$model

weight group

1 4:17 Ctl

2 5:58 Ctl

3 5:18 Ctl

4 6:11 Ctl

5 4:50 Ctl

6 4:61 Ctl

7 5:17 Ctl

8 4:53 Ctl

9 5:33 Ctl

10 5:14 Ctl

11 4:81 Trt

12 4:17 Trt

13 4:41 Trt

14 3:59 Trt

15 5:87 Trt

16 3:83 Trt

17 6:03 Trt

18 4:89 Trt

19 4:32 Trt

20 4:69 Trt
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For instance, the residualsmethod will extract the "residuals," the predictmethod will

extract the "fitted.values" from an lm object, the model.framemethod will return the data

input, and the summarymethod will print the model residuals, coefficients and their associ-

ated statistics.

# return the functions that operate on an object with class lm

methods(class = "lm")
½1� add1 alias anova case:names

½5� coerce confint cooks:distance deviance

½9� dfbeta dfbetas drop1 dummy:coef

½13� effects extractAIC family formula

½17� hatvalues influence initialize kappa

½21� labels logLik model:frame model:matrix

½25� nobs plot predict print

½29� proj qr residuals rstandard

½33� rstudent show simulate slotsFromS3

½37� summary variable:names vcov

see '?methods' for accessing help and source code

summary(lm.D9)
Call:
lm(formula = weight ~ group, data = data)
Residuals:

Min 1Q Median 3Q Max

�1:0710 �0:4938 0:0685 0:2462 1:3690

Coefficients:
EstimateStd: Error tvalue Prð>jtjÞ

ðInterceptÞ 5:0320 0:2202 22:850 9:55e�15 ***

groupTrt �0:3710 0:3114 �1:191 0:249

Signif. codes: 0 '���' 0.001 '��' 0.01 '�' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6964 on 18 degrees of freedom
Multiple R-squared: 0.07308, Adjusted R-squared:
0.02158
F-statistic: 1.419 on 1 and 18 DF, p-value: 0.249
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The output of the lm function can be expressed as a basic linear model with the form:

Yi ¼ b
0
þ b

1
� Xi þ �i:

We can substitute in our variable names and coefficients:

weighti ¼ 5:0320� 0:3710 � treatmenti:

If a resource manager is interested in a system state (plant weight at time t), this model can

be used to help determine if a management action (the treatment) should be used to shift the

system to a new state at time t + 1. Average plant weight for the control group was 5.0320

units, while average plant weight for the treatment group was 5.0320–0.3710 = 4.661. These

averages are not far apart, and the model results indicate that the treatment may not yield a

strong change in plant weight.

An important part of the lm output is the model ‘fit,’ which conveys how well the linear

model fits the observed data. In this case, the model does not fit very well (adjusted R-

squared = 0.02158). Additionally, the standard errors associated with each coefficient reflect

our uncertainty in the parameter estimates, and thus influence our belief that the treatment

does not strongly affect plant weight. Both represent a form of structural uncertainty in the

model. And because treatment, a management action, is included within this model, partial

controllability is another source of uncertainty.

To summarize this example, the analytical inputs are stored as a dataframe, and the analyti-

cal outputs are returned as an object of class lm.

Example 2. Occupancy modeling

Model uncertainty may also result from the structural form of the model itself. To illustrate,

we now consider two alternative models from a single season occupancy analysis for a wildlife

species of interest [19]. The primary input for a single season occupancy analysis consists of

raw survey data across multiple study sites in the form of detection and non-detection data,

where 1 means the species was detected on a given survey at a given site and 0 means the spe-

cies was not detected. Additional inputs include covariates associated with each site (such as

habitat type or elevation) and covariates associated with the conditions associated with each

survey (such as date, time, weather conditions, or observer). The analysis returns maximum

likelihood estimates for occupancy (the probability that a site is occupied) and detection (the

probability that a species will be detected, given it is present on a site).

The single season occupancy analysis can be run with the occu function in the R package,

unmarked [20]. Here, we use the code in the occu helpfile to run a single-season occupancy

analysis on chorus frog (Pseudacris feriarum) occupancy at 130 sites in Delaware [21].

# load package unmarked

suppressPackageStartupMessages(library(unmarked))
# load the chorus frog data

data(frogs)
# create an unmarked frame

pferUMF <- unmarkedFrameOccu(pfer.bin)
# get the number of sites in which frogs were surveyed

AMModels: An R package for storing models, data, and metadata to facilitate adaptive management
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The unmarkedFrame object is the input needed to run a single season occupancy analysis

with the occu function. In the (human-readable) data frame representation displayed above,

the first three columns (labeled y.1, y.2, and y.3) give the results of the chorus frog surveys, of

which there are three. For instance, on site 1, chorus frogs were detected on survey 1, not

detected on survey 2, and survey 3 was not conducted, yielding 1, 0, NA in row one, columns

one through three of the dataset. On site 2, chorus frogs were detected on survey 1, not

detected on survey 2, and not detected on survey 3, yielding 1, 0, 0 in row two.

There is a single site-level covariate in this dataset, named sitevar1, which was simulated

such that sites with detections generally had higher sitevar1 values compared to sites with no

detections. For example, site 1’s sitevar1 value is 18.49, while site 6’s sitevar1 value is 11.71.

num.sites <- numSites(pferUMF)
# add a fake site level covariate called sitevar1 for illustration

# specify a seed for a random number generator; used for
reproducibility.
set.seed(20)
site.sums <- rowSums(pferUMF@y, na.rm = T)
sitevar1 = round(rnorm(n = num.sites, mean = ifelse(test = site.
sums > 0, yes = 15, no = 10), sd = 3), 2)
siteCovs(pferUMF) <- data.frame(sitevar1)
# add a fake observation covariate called obsvar1 for illustration

obsCovs(pferUMF) <- data.frame(obsvar1 = c(rep(1:3, num.sites)))
# look at the first 10 records of the resulting unmarkedFrame
object.
head(pferUMF, n = 10)
Data frame representation of unmarkedFrame object.

y:1 y:2 y:3 sitevar1 obsvar1:1 obsvar1:2 obsvar1:3

1 1 0 NA 18:49 1 2 3

2 1 0 0 13:24 1 2 3

3 1 0 0 20:36 1 2 3

4 1 0 0 11:00 1 2 3

5 0 0 0 8:66 1 2 3

6 0 0 0 11:71 1 2 3

7 0 0 0 1:33 1 2 3

8 0 0 0 7:39 1 2 3

9 1 0 0 13:61 1 2 3

10 0 0 0 8:33 1 2 3

AMModels: An R package for storing models, data, and metadata to facilitate adaptive management
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There is a single detection covariate in this dataset, named obsvar1. Notice that there are

three columns associated with obsvar1, representing the value of obsvar1 for each of the three

surveys. Here, obsvar1’s value is the survey number (1, 2, or 3), which presumably ranks the

survey date.

The occu function can be used to analyze the unmarkedFrame object with a single-season

occupancy model. This function requires that two models are specified as a double right-hand

side formula: one component for detection (which is specified first) and one for occupancy. Here,

we run the occupancy model when detection is a function of obsvar1 and occupancy is a function

of sitevar1, and point to the unmarkedFrame called pferUMV as the required data input.

The output of this analysis, named here as fm1, is an object is of class unmarkedFitOccu,

which we can verify with the class function. The "package" attribute identifies the R package

that produced this object, which will be handy to jog our human memory when we store mod-

els for future re-use.

The output contains the raw information needed to draw conclusions about chorus frog

occupancy rates and the covariates that (may) affect occupancy state and detection. The output

is stored in 13 slots, and includes not only the model output, but also the details about the anal-

ysis, including the two primary inputs (formula and data).

# get the slots names associated with fm1 output

slotNames(fm1)
½1� }knownOcc} }fitType} }call}

½4� }formula} }data} }sitesRemoved}

½7� }estimates} }AIC} }opt}

½10� }negLogLike} }nllFun} }bootstrapSamples}

½13� }covMatBS}

# fit a single-season occupancy model where detection is a function
of obsvar1 and occupancy is a function of sitevar1

fm1 <- occu(formula = ~obsvar1 ~ sitevar1, data = pferUMF)

# get the class of fm1

class(fm1)
[1] "unmarkedFitOccu"
attr(,"package")
[1] "unmarked"
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As with the lm output, the authors of unmarked provide numerous methods for summarizing

and extracting results from an unmarkedFitOccu object. For example, the summarymethod will

return the model coefficients, the AIC, and other information for evaluating the model.

The occu function models on the log-odds (logit) scale, which is required because occu-

pancy and detection rates are probabilities that are constrained between 0 and 1. Thus, the

coefficients of an analysis output are on the logit scale. The chorus frog occupancy model has

the form:

logitðoccupancyÞi ¼ �7:340þ 0:575 � sitevar1i

This model (if it is shown to be adequate) can be of great utility to natural resource manag-

ers interested in managing chorus frogs. The model of chorus frog system occupancy suggests

that sites with sitevar1 levels> ~ 15 units have a high chance of being occupied. If sitevar1

can be manipulated by management activities, this model may allow resource managers to pre-

dict how the state of the system (occupancy) at time t can be shifted to a desired state at time

t + 1 (Fig 1) by manipulating sitevar1 across sites.

We can back-transform the logit score to a probability with the log-odds transformation,

and use the code on the following page to plot our results (Fig 2).

# run unmarked's summary function

summary(fm1)
Call:
occu(formula = ~obsvar1 ~ sitevar1, data = pferUMF)
Occupancy (logit-scale):

Estimate SE z Pð>jzjÞ

ðInterceptÞ �7:340 1:480 �4:96 7:08e�07

sitevar1 0:575 0:124 4:63 3:71e�06

Detection (logit-scale):
Estimate SE z Pð>jzjÞ

ðInterceptÞ 4:71 1:083 4:35 1:38e�05

obsvar1 �3:57 0:665 �5:37 8:06e�08

AIC: 159.3813
Number of sites: 130
optim convergence code: 0
optim iterations: 38
Bootstrap iterations: 0
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Fig 2. Chorus frog occupancy as a function of the simulated covariate, sitevar1.

https://doi.org/10.1371/journal.pone.0188966.g002

# create a matrix with a range of sitecov values

data <- cbind(1, seq(from = 0, to = 30, length.out = 100))
# calculate the linear score (logit) across a range of sitecov
values

lc <- linearComb(obj = fm1["state"], data)
# use unmarked's backTransform function to convert the linear score
(logit)

# to probability

btlc <- backTransform(lc)
# convert to dataframe and add upper and lower confidence intervals

btlc <- as(btlc, "data.frame")
btlc$uci <- btlc$Estimate + 1.96 � btlc$SE
btlc$lci <- btlc$Estimate—1.96 � btlc$SE
# plot the predicted occupancy rates

par(family = "serif")
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The occu outputs also contain a detection model, which, based on the model output, now

has the form:

logitðdetectionÞi ¼ 4:71þ�3:57 � obsvar1i

This model (if it is shown to be adequate) suggests that as obsvar1 increases, the detection

probability of chorus frogs decreases (a scan of the raw data shows that most frogs were

detected in survey 1 of the study). This model attempts to deal with partial observability in Fig

1. That is, the analyst attempts to discover those covariates that affect observability so that this

source of uncertainty can be reduced. The occumodel results show that conditions associated

with first chorus frog surveys resulted in much higher detection probability than in later sur-

veys. Although this result will probably not help identify management actions that push the

system state (occupancy), this information can be used to improve the accuracy of the moni-

toring program, and hence reduce partial observability (Fig 1). This, in turn, may lead to a bet-

ter model of system dynamics.

In most cases, multiple models are evaluated and compared to determine which model(s)

best explain the observed, raw data [22]. To wit, we now run a second occupancy analysis on

the chorus frog data, in which both detection and occupancy have no covariates (i.e., only the

intercepts will be estimated):

We can now compare the two models with the fitList and modSel functions in
unmarked.

plot(x = btlc$sitevar1, y = btlc$Estimate, type = "l", main = "Cho-
rus Frog Occupancy as a Function of Sitevar1",
xlab = "Value of sitevar1", ylab = "Predicted Occupancy")
# add uncertainty in the form of confidence interval lines

lines(x = btlc$sitevar1, y = btlc$lci, lty = "dashed", col = "gray")
lines(x = btlc$sitevar1, y = btlc$uci, lty = "dashed", col = "gray")

# create a list of models that will be compared

fl <- fitList(fm1. = fm1, fm2. = fm2)
# perform model selection analysis

ms <- modSel(object = fl, nullmod = "fm2.")
# view the results of the analysis

# fit a single season occupancy model with no covariates

fm2 <- occu(formula = ~1 ~ 1, data = pferUMF)
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Without getting into the weeds [22], the AIC weights (AICwt) from this analysis suggest

that model 1 (fm1) has 100% support, meaning that the model with no covariates (fm2) has 0

support. In other words, the structure of fm2 has so much structural uncertainty compared to

fm1 that it serves no purpose in chorus frog management. We would still like some evidence

that fm1 is a good ‘fit’ to our observed field data, which we can do with the MacKenzie and

Bailey Goodness-of-fit Test [19]. In R, this test is implemented by the mb.gof.test function
in the package AICcmodavg [23], typically executed with 1000’s of trials.

# load the package AICcmodavg

library(AICcmodavg)
# run the goodness of fit test

AICcmodavg::mb.gof.test(mod = fm1, nsim = 100, plot.hist = FALSE)
MacKenzie and Bailey goodness-of-fit for single-season occupancy
model
Pearson chi-square table:

Cohort Observed Expected Chi�square

000 0 58 66:22 1:02

010 0 4 0:77 13:43

100 0 35 27:49 2:05

00NA 1 12 9:19 0:86

10NA 1 1 3:41 1:70

0NANA 2 17 14:58 0:40

1NANA 2 3 5:42 1:08

Chi-square statistic = 23.4566
Number of bootstrap samples = 100
P-value = 0.04
Quantiles of bootstrapped statistics:

0% 25% 50% 75% 100%

0:22 2:13 3:26 6:00 74:71

Estimate of c-hat = 3.99

ms
nPars AIC delta AICwt cumltvWt Rsq

fm1: 4 159:38 0:00 1:0eþ00 1:00 0:65

fm2: 2 261:33 101:95 7:3e�23 1:00 0:00
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Again, without dwelling on details, this analysis suggests that even fm1 does not adequately

explain the observed data (with a very high overall Chi-square statistic of ~ 23, meaning our

observed and expected results are not very well matched). Keep in mind that we simulated the

covariates in this model, so a lack of fit is not surprising. However, if the data were not simu-

lated, this goodness of fit test suggests that fm1 has significant structural uncertainty, and we

should look for a better occupancy model, or even a different modeling approach.

To summarize this example, the analysis inputs are stored in an object of class unmarked-

Frame, and the analysis outputs are returned as an object of class unmarkedFitOccu.

Example 3. Bayesian modeling

Our final example is a Bayesian approach, which is an ideal modeling framework for adaptive

management because it codifies learning through time. The International Society of Bayesian

Analysis describe the Bayesian paradigm, which can be summarized as follows. First, current

knowledge about the model parameters of interest is expressed by placing a ‘prior probability

distribution’ on the parameters, which is often written as

pðyÞ:

Second, when new data y become available, the likelihood of observing the data given the

model parameters is calculated, which is often expressed as

pðyjyÞ:

Finally, the likelihood is then combined with the prior to produce an updated probability

distribution called the ‘posterior distribution,’ upon which all Bayesian inference is based. The

posterior distribution is often written as:

pðyjyÞ:

Bayes’ Theorem is an elementary identity in probability theory, and states how the prior

distribution is updated to the posterior distribution in light of new information, y. More pre-

cisely,

p yjyð Þ ¼
pðyÞpðyjyÞ

R
pðyÞpðyjyÞdy

:

Normally a Bayesian analysis in R would be conducted via a package such as rjags [24], in

which the analytical inputs are stored in an object of class jags and the model output is stored

in an object of classmcmc.list. Here, though, to illustrate the complete flexibility of AMMo-

dels, we will store inputs and outputs as typical S3 objects.

Suppose we have a need to estimate the probability of that apples in an orchard will be

infested by the apple maggot. Let’s call this probability p. With a Bayesian analysis, the analyst

must provide prior distributions for each parameter of interest, and we are focused on the sin-

gle parameter, p. We can represent our beliefs in alternative values of pwith a beta distribution

—a probability density function that is controlled by two parameters, normally called alpha

(α) and beta (β). Let’s first graph our prior distribution for the unknown parameter, p (Fig 3):

# establish prior distribution for the unknown parameter, p (a beta

# distribution)

alpha.prior <- 2

AMModels: An R package for storing models, data, and metadata to facilitate adaptive management

PLOSONE | https://doi.org/10.1371/journal.pone.0188966 February 28, 2018 14 / 57

https://doi.org/10.1371/journal.pone.0188966


Our model for p is fully represented by a beta distribution with parameters α = 2 and β = 3.

This particular model suggests that there is quite a bit of uncertainty regarding p.

In an adaptive management framework, the goal is to reduce this uncertainty. For example,

if we collect new data on infestation rates, we can use Bayes’ Theorem and update our beliefs

in alternative hypotheses for p. Suppose we collect a sample of 100 apples from our orchard,

and that 25 of them are infested. We can now combine this new data, along with the

beta.prior <- 3
p <- seq(from = 0, to = 1, by = 0.01)
prior.density <- dbeta(p, shape1 = alpha.prior, shape2 = beta.
prior, ncp = 0,
log = FALSE)
# graph the prior distribution

par(family = "serif")
plot(x = p, y = prior.density, type = "l", ylim = c(0, 10), ylab =
"Weight (Density)", xlab = "Hypotheses for Infestation Probability,
p", col = "red", lwd = 3, main = "Prior Distribution")

Fig 3. The prior distribution for infestation rate, p, is a beta distribution with α = 2 and β = 3.

https://doi.org/10.1371/journal.pone.0188966.g003
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parameters of the prior distribution for p, to generate a posterior distribution that reflects our

updated knowledge regarding infestation probability. For this particular problem, the parame-

ters for this posterior distribution can be calculated quickly with the following equations, where

n is the total number of apples in our sample, and y is the total number of infected apples:

• αposterior = αprior + y = 2 + 25 = 27

• βposterior = βprior + n − y = 3 + 100–25 = 78

A graph of the prior distribution and the posterior distribution can be displayed in Fig 4

using the code below: (Fig 4).

Notice how the new data has yielded updated knowledge about infestation probability, con-

siderably reducing our uncertainty. If you were to continue collecting data, you would now

use the parameters from the posterior distribution as the prior distribution, combine it with

another set of new data, and then generate a third, updated model for apple infestation. These

are valuable models that reflect the current knowledge of apple infestation and through time,

even though they do not link to management activities or to environmental drivers.

Unlike our previous two examples, the inputs and outputs for this analysis are not shaped

or stored in dedicated objects such as unmarkedFitOccu. Here, to make the simple point that

# establish posterior distribution for the unknown parameter, p (a
beta

# distribution)

alpha.posterior <- 27
beta.posterior <- 78
# calculate the densities associated with the updated distribution

posterior.density <- dbeta(p, shape1 = alpha.posterior,
shape2 = beta.posterior, ncp = 0, log = FALSE)
# plot the prior distribution

par(family = "serif")
plot(x = p, y = prior.density, xlim = c(0, 1), ylim = c(0, 10), type
= "l",
ylab = "Weight (Density)", xlab = "Hypotheses for Infestation Proba-
bility, p", main = "Prior and Posterior Distributions", col = "red",
lwd = 3)
# add the posterior distribution

lines(x = p, y = posterior.density, col = "blue", lwd = 3)
# add legend

legend("topright", legend = c(expression(paste("Prior Distribution:
", alpha, " = 2, ", beta, " = 3")), expression(paste("Posterior Dis-
tribution: ",
alpha, " = 27, ", beta, " = 78"))), lty = 1, col = c("red", "blue"),
bty = "n", cex = 0.75)
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AMModels can store user-defined analysis inputs and outputs, we will store our apple analysis

as a list, and link the second analysis with the first by specifying a list element named "prior"

(note that, in this hypothetical example, apple.m2 is connected with apple.m1 via a list ele-

ment named "prior").

Fig 4. The prior and posterior distributions for infestation probability, p.

https://doi.org/10.1371/journal.pone.0188966.g004

# create model1 as a list; coefficients

apple.m1 <- list(name = "apple.m1", distribution = "beta", prior =
list(alpha = 2, beta = 3))
# create model2 as a list; coefficients

apple.m2 <- list(name = "apple.m2", distribution = "beta", prior =
"apple.m1", data = c(y = 25, n = 100), posterior = list(alpha = 27,
beta = 78))
# look at the structure apple.m1
str(apple.m1)
List of 3
$ name : chr "apple.m1"
$ distribution: chr "beta"
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Models in Adaptive Management

An enormous variety of analytical approaches exist to meet a variety of needs (e.g., [25–31]).

The three examples are intended to simply highlight a few key points with respect to analytical

inputs and outputs in R in relation to adaptive management:

1. Analytical inputs to R functions are unique to the analytical framework (e.g. Example 1’s

input was a dataframe while Example 2’s input was an unmarkedFrame).

2. Analytical outputs from R functions are also unique to the analytical framework (e.g.,

Example 1’s output was class lm while Example 2’s output was class unmarkedFitOccu).

3. Outputs that are models represent a state of knowledge.

4. All models include elements of uncertainty. In the first two examples provided, there is

uncertainty in the coefficient estimates, and there is uncertainty in the model structure.

5. Models may be a primary output from an analysis, but they may also be an input for future

analyses (e.g., Example 3).

6. Information associated with an analysis itself (i.e., the analysis metadata) can preserve the

context of the analysis so that the analysis may be more confidently revisited at a later date.

In an adaptive management program, the models must be explicit, and models may be

modified through time as more and more is learned about the system being managed. The

notion of adaptive management is to acknowledge uncertainty at every turn, and reduce this

uncertainty by careful monitoring and study over time.

$ prior : List of 2
..$ alpha: num 2
..$ beta: num 3

# look at the structure apple.m2
str(apple.m2)
List of 5
$ name : chr "apple.m2"
$ distribution: chr "beta"
$ prior : chr "apple.m1"
$ data : Named num [1:2] 25 100
..- attr(�, "names") = chr [1:2] "y" "n"

$ posterior : List of 2
..$ alpha: num 27
..$ beta : num 78
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The R package, AMModels

The overall goal of AMModels is straight-forward: To codify knowledge in the form of models

and to store it, along with models generated from numerous analyses and datasets that may

come our way, so that it can be used in the future. AMModels facilitates this process by storing

analysis inputs, outputs, and metadata in a single object that can be repeatedly updated to

track changes in knowledge through time.

In this section, we demonstrate the core functionality and typical workflow of AMModels.

Many of these examples are highlighted in the package’s helpfiles. In the final section of this

paper, we introduce the AMModel Manager, a Shiny application [32] that simplifies the stor-

age and retrieval of models and associated datasets.

amModelLib Object

A central idea of AMModels is that all models and datasets, along with their metadata, are

stored in an amModelLib object, where "Lib" stands for "library." This is an S4 object that can

be updated and used repeatedly as a way of carting around knowledge in the form of models.

Think of the amModelLib as a vault or repository that stores datasets (analysis inputs) and

models (analysis outputs). The function amModelLib creates the object.

# create an amModelLib object

mymodels <- amModelLib(description = "This AM Model Library stores
models and data.", info = list(owner = "me", email = "me@somewhere.
com"))
# view the amModelLib

mymodels
Description:
[1] This AM Model Library stores models and data.
Info:

owner
[1] me

email
[1] me@somewhere.com

date.created
[1] 2017-10-04 07:28:28

Models:

# install.packages("AMModels")
# load AMModels

library(AMModels)
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An amModelLib objects contain 4 slots, which can be verified with the slotNames function.

Fig 5 highlights the four slots of the amModelLib:

1. description. A text field that describes the amModelLib. Generally the description is one

sentence long. Additional information can be stored in the info slot.

2. info. A named list that contains additional information about the amModelLib, such as the

name of the person who creates and maintains the amModelLib, and any additional related

metadata pertaining to the library itself.

3. data. This slot stores datasets, i.e., analysis inputs. Each dataset has a class of amData,

which consists of two slots: 1) datasets are stored in the data slot, and 2) metadata about the

dataset are stored in the metadata slot.

# view the slot names

slotNames(mymodels)
[1] "models" "data" "info" "description"

--- There are no models ---
Data:

--- There are no datasets ---

Fig 5. The structure of an amModelLib object, consisting of four slots.

https://doi.org/10.1371/journal.pone.0188966.g005

AMModels: An R package for storing models, data, and metadata to facilitate adaptive management

PLOSONE | https://doi.org/10.1371/journal.pone.0188966 February 28, 2018 20 / 57

https://doi.org/10.1371/journal.pone.0188966.g005
https://doi.org/10.1371/journal.pone.0188966


4. models. This slot stores models, i.e., analysis outputs. Each model has a class of amModel,

which consists of two slots: 1) models are stored in the model slot, and 2) metadata about

the model are stored in the metadata slot.

Each slot is described below. The package AMModels contains functions to create the

amModelLib object, functions to create objects of class amModel and amData, and methods

to insert, extract, and delete items from the amModelLib object. A cheat sheet of the various

functions can be found in Supplement 1.

The Description slot. The description slot can be viewed or updated with the function

ammlDesc.

The Info slot. The info slot of an amModelLib is a named list that stores information

about the model library itself. This list is unlimited in length. Information is stored in name

(key) = value syntax, such as:

• owner = "me"

• email = "me@somewhere.com"

The amModelLib info can viewed, retrieved, updated, or deleted with the function,

ammlInfo:

# look at the metadata associated with the amModelLib

ammlInfo(amml = mymodels)
$owner
[1] "me"
$email
[1] me@somewhere.com

# show the amModelLib description

ammlDesc(amml = mymodels)
[1] "This AM Model Library stores models and data."
# update the description

ammlDesc(amml = mymodels) <- "This AM Model Library stores analysis
inputs (data) and analysis outputs (models) associated with the
AMModels package vignette."
# show the amModelLib description

ammlDesc(amml = mymodels)
[1] "This AM Model Library stores analysis inputs (data) and analy-
sis outputs (models) associated with the AMModels package
vignette."
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The Data slot. The data slot of an amModelLib object contains a list of datasets (analysis

inputs), where each dataset is stored as an object of class amData. Although the outputs of

many analyses will contain the inputs as well (as with the lm and occu examples), the purpose

of this new class is to allow the user to store metadata associated with the inputs (datasets) to

an analysis.

The key functions associated with amData objects include:

• amData—creates an object of class amData.

• insertAMModelLib—inserts objects of class amData to an amModelLib object.

• rmData—deletes an amData object from an amModelLib object.

• getAMData—extracts ("checks out") an amData object from the amModelLib object and

returns it to R’s global environment.

To illustrate, let’s add the plant weight data that we analyzed earlier from the lm helpfile. To
add the dataset, we first convert the dataset to an amData object with the function, amData:

$date.created
[1] "2017-10-04 07:28:28"
# extract only the owner

ammlInfo(amml = mymodels, x = "owner")
$owner
[1] "me"
# deletions are done by setting the value associated with a key to
NULL

ammlInfo(amml = mymodels) <- list(date.created = NULL)
# update the owner name to Me, and add a new metadata element called

# organization

ammlInfo(amml = mymodels) <- list(owner = "Me", organization = "My
Organization")
# view the result

ammlInfo(amml = mymodels)
$owner
[1] "Me"
$email
[1] me@somewhere.com
$organization
[1] "My Organization"
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The function amData creates an object of class amData, which contains two slots. The first

slot is called data, which stores the data. In this example, the data are stored as a data frame

with 20 observations and 2 variables (the actual plant weight dataset).

The second slot is calledmetadata, which contains a list of metadata associated with this

dataset. In the example above, we added metadata fields for comment and taxa. Users should

create and standardize their own metadata naming conventions with a key-value syntax. The

metadata descriptions (values) can be any length. It is up to the user to determine which meta-

data to store (the values) and their corresponding names. However, the object creation date,

"date.created" is automatically added.

Typing in the name of the amData object will display its contents.

# look at the amData object

plant.data
An object of class "amData"
Slot "data":

weight group
1 4.17 Ctl
2 5.58 Ctl
3 5.18 Ctl
4 6.11 Ctl
5 4.50 Ctl
6 4.61 Ctl

# Annette Dobson (1990) 'An Introduction to Generalized Linear
Models'.
# Page 9: Plant Weight Data.
ctl <- c(4.17, 5.58, 5.18, 6.11, 4.5, 4.61, 5.17, 4.53, 5.33, 5.14)
trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)
group <- gl(n = 2, k = 10, length = 20, labels = c("Ctl", "Trt"))
weight <- c(ctl, trt)
# store the data within a dataframe

plant.wt <- data.frame(weight, group)
# create an object of class amData, which includes the dataset and

# corresponding metadata.
plant.data <- amData(data = plant.wt, comment = "Plant dataset from
the lm helpfile.", taxa = "plants")
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Alternatively, one could see a summary of the object.

7 5.17 Ctl
8 4.53 Ctl
9 5.33 Ctl
10 5.14 Ctl
11 4.81 Trt
12 4.17 Trt
13 4.41 Trt
14 3.59 Trt
15 5.87 Trt
16 3.83 Trt
17 6.03 Trt
18 4.89 Trt
19 4.32 Trt
20 4.69 Trt
Slot "metadata":
$comment
[1] "Plant dataset from the lm helpfile."
$taxa
[1] "plants"
$date
[1] "2017-10-04 07:28:28"

# look at a summary of an amData object

summary(plant.data)
weight group

Min:: 3:590 Ctl:10

1stQu:: 4:388 Trt:10

Median: 4:750

Mean: 4:846

3rdQu:: 5:218

Max:: 6:110

--- Metadata ---
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Here, the data slot in the amData object is occupied by a data frame. Thus, the summary
function invokes R’s summarymethod for data frames and displays the results. The second

portion of the summary output is an abbreviated look at the metadata.

The function insertAMModelLib can be used to insert this object into the amModelLib.

The amData objects to be inserted must be provided as a named list.

Typing in the name of the amModelLib returns an abbreviated look at the contents:

# show an abbreviated view of the amModelLib

mymodels
Description:
[1] This AM Model Library stores analysis inputs (data) and analysis

outputs (models) associated with the AMModels package
vignette.
Info:

owner
[1] Me

email
[1] me@somewhere.com

organization
[1] My Organization

Models:
--- There are no models ---

name value
1 comment Plant dataset from the lm helpfile.
2 taxa plants
3 date 2017-10-04 07:28:28

# insert data to amModelLib as a named list

mymodels <- insertAMModelLib(data = list(plant.data = plant.data),
amml = mymodels)
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Under the "Data:" section, we see the name of each amData object, its class, and the package

of origin (if it is readily available). Rows and columns are also provided for objects that contain

data frames.

The metadata associated with all amData objects or a specific amData objects can be

viewed or set with the dataMeta function.

# view all metadata associated with datasets

dataMeta(amml = mymodels)
$plant.data
$plant.data$comment
[1] "Plant dataset from the lm helpfile."
$plant.data$taxa
[1] "plants"
$plant.data$date
[1] "2017-10-04 07:28:28"
# view metadata associated with the amData object, plant.data

dataMeta(amml = mymodels, x = "plant.data")
$comment
[1] "Plant dataset from the lm helpfile."
$taxa
[1] "plants"
$date
[1] "2017-10-04 07:28:28"
# add some additional metadata to an amData object in the form of a
named

# list

dataMeta(amml = mymodels, x = "plant.data") <- list (url = "https://
stat.ethz.ch/R-manual/R-devel/library/stats/html/lm.html",
group = "The column named 'group' identifies which group a sample
belongs to, where Ctl = control group and Trt = treatment group.",
weight = "The column named 'weight' provides total biomass of the
sample, in grams.")

Data:
name class rows cols package

1 plant.data data.frame 20 2 NA
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The dataMeta function can also be used to quickly copy existing metadata to a new

amData object. For instance, agencies or organizations that produce the same analyses year

after year can create a new amData object that includes an updated dataset, but utilizes the

metadata from a previous year’s amData object.

# recall our original plant data is from the lm helpfile

plant.wt <- data.frame(group, weight)
# add a few new records of plant data

new.plant.data <- data.frame(group = c("Ctl", "Trt"), weight = c
(4.5, 3.83))
# combine data to make an updated plant dataset

updated.plant.data <- rbind(plant.wt, new.plant.data)
# extract the metadata from the existing amData object, plant.data
metadata <- dataMeta(amml = mymodels, x = "plant.data")
# create new amData object that combines the new data with the
existing metadata

updated.plant.data <- amData(data = updated.plant.data, metadata)
# insert the amData object to the AM model library as a named list

mymodels <- insertAMModelLib(data = list(updated.plant.
data = updated.plant.data), amml = mymodels)
# view metadata associated with the new amData object, updated.
plant.data
dataMeta(amml = mymodels, x = "updated.plant.data")
$comment
[1] "Plant dataset from the lm helpfile."
$taxa
[1] "plants"
$date
[1] "2017-10-04 07:28:28"
$url
[1] https://stat.ethz.ch/R-manual/R-devel/library/stats/html/lm.
html
$group
[1] "The column named 'group' identifies which group a sample
belongs to, where Ctl = control group and Trt = treatment group."
$weight
[1] "The column named 'weight' provides total biomass of the sample,
in grams."
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Multiple amData objects can be inserted to an amModelLib simultaneously using the same

process. For example, below we create a data frame containing our apple infection data (called

apples), and a second data frame (called sim.covs) that is simulated with the function,

simCovariate.

To add these two datasets to our amModelLib, we first convert each to an object of class

amData with the function, amData, and then insert it to the amModelLib with the inser-
tAMModelLib function.

# create apple infestation data frame

apples <- data.frame(n = 100, y = 25)
# create a list of uncorrelated covariates

cov.list <- list(unif1 = list(dist = "runif", min = 0, max = 10,
seed = 334,
round = 0), unif2 = list(dist = "runif", min = 0, max = 10,
seed = 668,
round = 0), norm1 = list(dist = "normal", mean = 10, sd = 2,
seed = 10,
round = 1), norm2 = list(dist = "normal", mean = 50, sd = 10,
seed = 15,
round = 2), beta1 = list(dist = rbeta, shape1 = 2, shape2 = 1,
seed = 1002),
binom1 = list(dist = "bin", size = 20, prob = 0.5, seed = 561),
bern1 = list(dist = "bernoulli", size = 1, prob = 0.5, seed = 6))
# generate a data frame with the covariate list and show

(sim.covs <- simCovariate(cov.list = cov.list, n = 10, add.
yr = TRUE))

unif1 unif2 norm1 norm2 beta1 binom1 bern1 yr

1 7 6 9:1 44:07 0:9008661 8 1 1

2 8 7 9:0 31:52 0:6645892 11 1 2

3 3 4 11:4 39:52 0:9618653 13 1 3

4 1 8 6:5 45:96 0:8872998 8 1 4

5 10 4 9:4 44:17 0:5601055 11 0 5

6 8 7 7:6 43:26 0:9934818 9 1 6

7 6 8 10:9 42:66 0:6639714 11 1 7

8 0 1 11:2 53:89 0:6274681 6 0 8

9 2 3 8:5 51:77 0:6857797 11 0 9

10 3 1 9:5 63:01 0:7370935 11 1 10
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Datasets are not limited to data frames. To demonstrate, we now add the chorus frog

unmarked frame object to an amData object and add it to our amModelLib.

# create an amData object containing the apple data.
apple.data <- amData(data = apples, comment = "Apple infestation
dataset for Bayesian analysis.")
# create an amData object containing the simulated covariate data.
sim.data <- amData(data = sim.covs, comment = "Simulated covariate
dataset.")
# add the two amData objects to the amModelLib; remember it must be
named list.

mymodels <- insertAMModelLib(data = list(apple.data = apple.data,
sim.data = sim.data), amml = mymodels)
# show the contents; note the library now contains 4 datasets.
mymodels
Description:
[1] This AM Model Library stores analysis inputs (data) and analysis

outputs (models) associated with the AMModels package
vignette.
Info:

owner
[1] Me

email
[1] me@somewhere.com

organization
[1] My Organization

Models:
--- There are no models ---

Data:
name class rows cols package

1 plant:data data:frame 20 2 NA

2 updated:plant:data data:frame 22 2 NA

3 apple:data data:frame 1 2 NA

4 sim:data data:frame 10 8 NA
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Our amModelLib now consists of five amData objects within the data slot:

# load the chorus frog data

data(frogs)
# create an unmarked frame

pferUMF <- unmarkedFrameOccu(pfer.bin)
# get the number of sites in which frogs were surveyed

num.sites <- numSites(pferUMF)
# add a fake site level covariate called sitevar1 for illustration

# specify a seed for a random number generator; used for
reproducibility.
set.seed(20)
site.sums <- rowSums(pferUMF@y, na.rm = T)
sitevar1 = round(rnorm(n = num.sites, mean = ifelse(test = site.
sums > 0, yes = 15, no = 10), sd = 3), 2)
siteCovs(pferUMF) <- data.frame(sitevar1)
# create an object of class amData

frog.data <- amData(data = pferUMF, comment = "Chorus frog dataset
from the package unmarked.", taxa = "Chorus Frog", url = "http://
www.rdocumentation.org/packages/unmarked/versions/0.11-0/topics/
occu")
# the summary function would show the results of the summary method
in package unmarked summary(frog.data)
# add the amData to the amModelLib as a named list

mymodels <- insertAMModelLib(data = list(frog.data = frog.data),
amml = mymodels)

# show the contents of an amModelLib object

mymodels
Description:
[1] This AM Model Library stores analysis inputs (data) and analysis

outputs (models) associated with the AMModels package
vignette.
Info:

owner
[1] Me

email
[1] me@somewhere.com

organization
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Use the lsData function to retrieve the names of the amData objects in an amModelLib,

where ls indicates list (in the general sense):

For objects of class amModelLib, the summary function will provide a summary of the con-

tents of the amModelLib as shown above, but will also display an abbreviated view of the

metadata.

[1] My Organization
Models:
--- There are no models ---

Data:
name class rows cols package

1 plant:data data:frame 20 2 <NA>

2 updated:plant:data data:frame 22 2 <NA>

3 apple:data data:frame 1 2 <NA>

4 sim:data data:frame 10 8 <NA>

5 frog:data unmarkedFrameOccu NA NA unmarked

# run the summary method an amModelLib object

summary(mymodels)
Description:
[1] This AM Model Library stores analysis inputs (data) and analysis

outputs (models) associated with the AMModels package
vignette.
Info:

owner

# retrieve the names of the amData objects

lsData(mymodels)
[1] "plant.data" "updated.plant.data" "apple.data"
[4] "sim.data" "frog.data"
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[1] Me
email
[1] me@somewhere.com

organization
[1] My Organization

--- There are no models ---
--- Data Names and Indices ---

name class rows cols package

1 plant:data data:frame 20 2 <NA>

2 updated:plant:data data:frame 22 2 <NA>

3 apple:data data:frame 1 2 <NA>

4 sim:data data:frame 10 8 <NA>

5 frog:data unmarkedFrameOccu NA NA unmarked

--- Data metadata ---
[[1]] plant.data
name value

1 comment Plant dataset from the lm helpfile

2 taxa plants

3 date 2017�10�04 07:28:28

4 url https : ==stat:ethz:ch=R�manual=R�devel=library=stats=html=lm ...

5 group The column named 0group0 identifies which group a sample bel ...

6 weight The column named 0weight0 provides total biomass of the samp ...

[[2]] updated.plant.data
name value

1 comment Plant dataset from the lm helpfile

2 taxa plants

3 date 2017�10�04 07:28:28

4 url https : ==stat:ethz:ch=R�manual=R�devel=library=stats=html=lm ...

5 group The column named 0group0 identifies which group a sample bel ...

6 weight The column named 0weight0 provides total biomass of the samp ...
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The summary output is intended to let the user scan the names and indices of the models

and datasets within the amModelLib object, and then use the index to quickly find the meta-

data associated with each object. Notice that the summary function truncates the metadata

values.

To retrieve a specific amData object and return the object to R’s global environment in its

original class, the getAMData accessor function can be used. Let’s extract the plant data with

the getAMData function, which requires the name of the amData object. The argument, as.

list indicates how the object is to be returned: FALSE will return the data in its original class,

while TRUE will return a list containing the data in its original class and the metadata.

[[3]] apple.data
name value

1 comment Apple infestation dataset for Bayesian analysis:

2 date 2017�10�04 07:28:28

[[4]] sim.data
name value

1 comment Simulated covariate dataset:

2 date 2017�10�04 07:28:28

[[5]] frog.data
name value

1 comment Chorus frog dataset from the package unmarked:

2 taxa Chorus Frog

3 url http : ==www:rdocumentation:org=packages=unmarked=versions=0:1

4 date 2017�10�04 07:28:29

# retrieve the frog.data to R's global environment (this does not
delete it from the library)

extracted.plant.data <- getAMData(x = "plant.data",
amml = mymodels, as.list = FALSE)
# the extracted data are returned in their original form

class(extracted.plant.data)
[1] "data.frame"

AMModels: An R package for storing models, data, and metadata to facilitate adaptive management

PLOSONE | https://doi.org/10.1371/journal.pone.0188966 February 28, 2018 33 / 57

https://doi.org/10.1371/journal.pone.0188966


As a second example, we will extract the chorus frog data with the getAMData function as a

list:

Notice the returned object is a list containing two elements. The first list element is named

data, which is of class of unmarkedFrameOccu generated by the package, unmarked. The sec-

ond list element is another list providing the metadata associated with the dataset.

To remove a specific amData object from the amModelLib, use the rmData function.
amData objects can be deleted by index or by name. Here, we delete the ‘sim.data’ amData

object by referencing its current index (4).

# retrieve the frog.data to R's global environment as a list con-
taining data and metadata

extracted.frog.data <- getAMData(x = "frog.data", amml = mymodels,
as.list = TRUE)
# view the first three records of the extracted.frog.data
lapply(X = extracted.frog.data, FUN = head, n = 3)
$data
Data frame representation of unmarkedFrame object.

y:1 y:2 y:3 sitevar1 obsvar1:1 obsvar1:2 obsvar1:3

1 1 0 NA 13:02 1 2 3

2 1 0 0 12:92 1 2 3

3 1 0 0 17:75 1 2 3

$metadata
$metadata$comment
[1] "Chorus frog dataset from the package unmarked."
$metadata$taxa
[1] "Chorus Frog"
$metadata$url
[1] "http://www.rdocumentation.org/packages/unmarked/versions/
0.11-0/topics/occu"

# remove the amData object, 'sim.data' by index

mymodels <- rmData(amml = mymodels, x = 4)
# notice the sim.data amModel object has been removed, leaving 4
datasets
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Note that all indices have shifted as a result. We can also delete by name. Here, we delete

the amData ‘updated.plant.data’:

The Models slot. Models (analysis outputs) are stored in the model slot of the amModel-

Lib object, and the model slot is a list of objects of class amModel. As with the amData class

detailed above, the purpose of this class is to store not only the analysis outputs, but also meta-

data about the outputs. The key functions associated with amModel objects (Supplement 1)

include:

• amModel—creates an object of class amModel.

• insertAMModelLib—inserts objects of class amModel to a amModelLib object.

• rmModel—deletes an amModel object.

• getAMModel—extracts an amModel object from the amModelLib object and returns it to

the global environment in its original form.

To illustrate, first we will retrieve our plant data from the library, and then analyze plant

weights with the function, lm and store the results in an object of class lm named lm.D9. Next,

we will use the amModel function to convert the analysis outputs to an amModel object

(including metadata), and will then add this model to our amModelLib with the insertAM-
ModelLib function. As with datasets, models must be supplied as a named list and a user can

enter any metadata using a key-value syntax.

lsData(mymodels)
[1] "plant.data" "updated.plant.data" "apple.data"
[4] "frog.data"

# remove the amModel 'updated.plant.data' from the amModelLib

mymodels <- rmData(amml = mymodels, x = "updated.plant.data")
# notice the updated.plant.data amModel object has been removed,
leaving 3 datasets

lsData(mymodels)
[1] "plant.data" "apple.data" "frog.data"

# retrieve the plant data from the library

plant.data <- getAMData(amml = mymodels, x = "plant.data", as.
list = FALSE)
# run the analysis

lm.D9 <- lm(weight ~ group, data = plant.data)
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You may recall that the lm.D9 object contains a rich amount of information about the lin-

ear model analysis, including the data inputs. The example above adds lm.D9 to an amModel

object, and supplies additional metadata about the analysis itself.

In this example, the metadata contains an (optional) element named data, which points to

the name of the amData dataset that was used to create that model. The relationship estab-

lished by this pairing is completely informal and no checking is performed to verify the

existence or compatibility of the data.However, accessor functions will look for the keyword

"data" in the model’s metadata, and will retrieve the dataset that is linked to the model if such a

pairing is indicated. The "data" metadata element is currently the only element that will trigger

a relationship pairing. [Future versions of AMModels will include a "prior" metadata element

that pairs posterior models with their prior models.]

Typing in the name of the amModel object will show the object according to the object’s

original class. Alternately, a user can invoke the summarymethod to look at the amModel

object, which returns a summary of the model and its associated metadata.

# look at the summarized snapshot of an amModel object

summary(plant.model)
Call:
lm(formula = weight ~ group, data = plant.data)
Residuals:

Min 1Q Median 3Q Max

�1:0710 �0:4938 0:0685 0:2462 1:3690

Coefficients:
EstimateStd: Error t value Prð>jtjÞ

ðInterceptÞ 5:0320 0:2202 22:850 9:55e�15 ***

groupTrt �0:3710 0:3114 �1:191 0:249

Signif. codes: 0 '���' 0.001 '��' 0.01 '�' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6964 on 18 degrees of freedom

# create an amModel and add metadata

plant.model <- amModel(model = lm.D9, comment = "Analysis from lm
helpfile",
data = "plant.data")
# insert the model to the amModelLib as a named list

mymodels <- insertAMModelLib(models = list(plant.model = plant.
model), amml = mymodels)
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Here, because the model slot in the amModel object is occupied by an object of class lm,

the call is passed to the summarymethod defined for lm objects and the results are displayed.

The same steps are used to add the chorus frog occupancy model to the amModelLib.

Here, we add the results of our two occupancy models (fm1 and fm2) by first creating amMo-

del objects with metadata, and then inserting them to the amModelLib with the insertAM-
ModelLib function.

Multiple R-squared: 0.07308, Adjusted R-squared: 0.02158
F-statistic: 1.419 on 1 and 18 DF, p-value: 0.249
--- Metadata ---

name value

1 comment Analysis from lm helpfile

2 data plant:data

3 date 2017�10�04 07:28:29

# retrieve the frog data from the library (an unmarkedFrame object)

frog.data <- getAMData(amml = mymodels, x = "frog.data", as.
list = FALSE)
# run the first analysis and store the results as fm1

fm1 <- occu(formula = ~obsvar1 ~ sitevar1, data = frog.data)
# create an amModel object for the first analysis and add metadata

frog.model1 <- amModel(model = fm1, comment = "Occupancy as a func-
tion of sitevar1 and detection as a function of obsvar1.", data =
"frog.data")
# run the second analysis (the intercept only model) and store the
results as fm2

fm2 <- occu(formula = ~1 ~ 1, data = frog.data)
# create an amModel object for the second analysis and add metadata

frog.model2 <- amModel(model = fm2, comment = "Occupancy as a func-
tion of no covariates and detection as a function of no covariates",
data = "frog.data")
# insert both models to the amModelLib as a named list

mymodels <- insertAMModelLib(models = list(frog.model1 = frog.
model1, frog.model2 = frog.model2), amml = mymodels)
# show the contents of the amModelLib object

mymodels
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Finally, let’s add two Bayesian apple infestation rate models. Recall that this analysis is a

user-defined model that has not been formally conducted with a dedicated R package, which

would be a normal course of action. Here, we will link the second model to the first model

using the ‘prior’ metadata keyword, and link the second model’s data to the ‘apple.data’

amData object using the ‘data’ metadata keyword.

Description:
[1] This AM Model Library stores analysis inputs (data) and analysis

outputs (models) associated with the AMModels package
vignette.
Info:

owner
[1] Me

email
[1] me@somewhere.com

organization
[1] My Organization

Models:
name class package

1 plant:model lm <NA>

2 frog:model1 unmarkedFitoccu unmarked

3 frog:model2 unmarkedFitoccu unmarked

Data:
name class rows cols package

1 plant:data data:frame 20 2 <NA>

2 apple:data data:frame 1 2 <NA>

3 frog:data unmarkedFrameOccu NA NA unmarked

# create apple.m1 as a list

apple.m1 <- list(distribution = "beta", parameters = list
(alpha = 2, beta = 3))
# create an amModel object for apple.m1
apple.m1 <- amModel(model = apple.m1, comment = "Bayes model 1 for
apple infestation")
# create apple.m2 as a list
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Our amModelLib object now contains five amModel objects and three amData objects.

# show the contents of the amModelLib object

mymodels
Description:
[1] This AM Model Library stores analysis inputs (data) and analysis

outputs (models) associated with the AMModels package
vignette.
Info:

owner
[1] Me

email
[1] me@somewhere.com

organization
[1] My Organization

Models:
name class package

1 plant:model lm <NA>

2 frog:model1 unmarkedFitOccu unmarked

3 frog:model2 unmarkedFitOccu unmarked

4 apple:m1 list <NA>

5 apple:m2 list <NA>

apple.m2 <- list(distribution = "beta", posteriors = list
(alpha = 27, beta = 78))
# create an amModel object for apple.m2; link this model to apple.m1
and also associate the dataset.
apple.m2 <- amModel(model = apple.m2, comment = "Bayes model 2 for
apple infestation", prior = "apple.m1", data = "apple.data")
# insert both models to the amModelLib object as a named list

mymodels <- insertAMModelLib(models = list(apple.m1 = apple.m1,
apple.m2 = apple.m2), amml = mymodels)
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The summary function would display the same information, but additionally provide the

metadata associated with each amModel and amData object.

Use the lsModels function to retrieve the names of the amModel objects in an

amModelLib:

The modelMeta function is analogous to the dataMeta function and allows metadata to be

viewed or set after the model has been inserted into the amModelLib object. Although we do

not provide an example, it is possible to store the R code used to generate the model as meta-

data to enhance analytic reproducibility.

To retrieve ("check out") a specific amModel object and return its original class to R’s global

environment, the getAMModel accessor function can be used. Let’s extract the first frog model

with the getAMModel function, which requires the name of the amModel object. The optional

argument, as.list indicates how the object is to be returned: FALSE (default) will return the

model in its original class, while TRUE will return a list containing the model in its original

class and the metadata.

Data:
name class rows cols package

1 plant:data data:frame 20 2 <NA>

2 apple:data data:frame 1 2 <NA>

3 frog:data unmarkedFrameOccu NA NA unmarked

# list the amModel objects within the library

lsModels(mymodels)
[1] "plant.model" "frog.model1" "frog.model2" "apple.m1"
"apple.m2"

# retrieve frog.model1; this does not remove the model from the
library

extracted.frog.model1 <- getAMModel("frog.model1", amml = mymodels,
as.list = FALSE)
# the extracted model is returned in its original form

class(extracted.frog.model1)
[1] "unmarkedFitOccu"
attr(,"package")
[1] "unmarked"
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To remove a specific amModel object from the amModelLib, use rmModel function. As
with rmData, a model can be deleted by index or by name. Here, we delete the amModel

‘apple.m2’:

Note that all indices have shifted as a result. The shifting indices illustrate a critical concept:

never link models and data by index number as indices will shift as items are inserted and

# remove the amModel 'apple.m2' from the amModelLib

mymodels <- rmModel(mymodels, "apple.m2")
# show the amModelLib

mymodels
Description:
[1] This AM Model Library stores analysis inputs (data) and analysis

outputs (models) associated with the AMModels package
vignette.
Info:

owner
[1] Me

email
[1] me@somewhere.com

organization
[1] My Organization

Models:
name class package

1 plant:model lm <NA>

2 frog:model1 unmarkedFitOccu unmarked

3 frog:model2 unmarkedFitOccu unmarked

4 apple:m1 list <NA>

Data:
name class rows cols package

1 plant:data data:frame 20 2 <NA>

2 apple:data data:frame 1 2 <NA>

3 frog:data unmarkedFrameOccu NA NA unmarked
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removed from the amModelLib object. Users who link models with data or models with mod-

els should do so by name, and the names should be treated as permanent names to retain the

integrity of the library.

Searching and subsetting the amModelLib

Users may create as many amModelLibs as needed to help organize a variety of models. As the

number of models and datasets grows within an amModelLib object, it may be useful to search

for objects within it and subset the amModelLib object if necessary. The function, grepAMMo-
delLib can be used for this purpose; it returns an object of class amModelLib containing the

matches to the search (if any).

The function uses grep to recursively search for a pattern in a given amModelLib object;

the pattern argument may therefore be a simple string or a regular expression. The user may

search both the model and data slots (‘all’), or either the model or the data slot by specifying a

search argument; omitting the search argument will default to ‘all’.

For example, here we search through all amData objects that include the term frog.

# search for data containing the word 'frog'

grepAMModelLib(pattern = "frog", amml = mymodels, search = "data")
Description:
[1] This AM Model Library stores analysis inputs (data) and analysis

outputs (models) associated with the AMModels package
vignette.
Info:

owner
[1] Me

email
[1] me@somewhere.com

organization
[1] My Organization

Models:
name class package

1 frog:model1 unmarkedFitOccu unmarked

2 frog:model2 unmarkedFitOccu unmarked

args(grepAMModelLib)
function (pattern, amml, search = c("all", "model", "data"),. . .)
NULL
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The results show an (unsaved) amModelLib object which contains an amData object called

‘frog.data’. Because the frog dataset was linked to frog.model1 and frog.model2 with the "data"

metadata element, the amModelLib object also contains two amModel objects.

Alternatively, the amModelLib can be subset with list subsetting. List subsetting methods

for amModelLib objects also attempt to keep the data with the models if they have been paired

by matching against the ‘data’ metadata element. Here, we subset the library by the name,

"plant.model", store the result as ‘mymodels2’, and verify that the library contains both the

model and the linked dataset.

Data:
name class rows cols package

1 frog:data unmarkedFrameOccu NA NA unmarked

# create new amModelLib named plantAnalyses that includes only the
plant models

plantAnalyses <- mymodels[c("plant.model")]
# update the description

ammlDesc(amml = plantAnalyses) <- "This AM Model Library stores
analysis inputs (data) and analysis outputs (models) associated
with the plant data in the lm helpfile."
# show the new library

plantAnalyses
Description:
[1] This AM Model Library stores analysis inputs (data) and analysis

outputs (models) associated with the plant data in the lm
helpfile.

Info:
owner
[1] Me

email
[1] me@somewhere.com

organization
[1] My Organization

AMModels: An R package for storing models, data, and metadata to facilitate adaptive management

PLOSONE | https://doi.org/10.1371/journal.pone.0188966 February 28, 2018 43 / 57

https://doi.org/10.1371/journal.pone.0188966


The grepAMModelLib function is intended to subset the amModelLib object to allow

users to locate datasets and associated models, and vice versa. However, if the subset library is

stored, such as in the example above, some models and datasets will be contained in multiple

libraries, which could lead to confusion (e.g., the plant analysis is now stored in two libraries,

plantAnalyses andmymodels).

To avoid such duplication, the grepAMModelLib function can be used to split an existing

amModelLib. For example, suppose we decide that the frog analyses should be stored in a sep-

arate library. The following code will search for the frog models and datasets, create a new

library called "chorusFrogLibrary", and remove them from the original library:

# pull out models and data containing the word 'frog' from the
library, mymodels

chorusFrogLibrary <- grepAMModelLib(pattern = "frog",
amml = mymodels, search = "all")
# update the library description

ammlDesc(amml = chorusFrogLibrary) <- "This AM Model Library stores
analysis inputs (data) and analysis outputs (models) associated
with chorus frog research and management."
# remove the amModels now in frog.library from mymodels

mymodels <- rmModel(amml = mymodels, x = lsModels
(chorusFrogLibrary))
# remove the amData now in frog.library from mymodels

mymodels <- rmData(amml = mymodels, x = lsData(chorusFrogLibrary))
# look at the frog.library
chorusFrogLibrary
Description:
[1] This AM Model Library stores analysis inputs (data) and analysis

outputs (models) associated with chorus frog research and

Models:
name class package

1 plant:model lm NA

Data:
name class rows cols package

1 plant:data data:frame 20 2 NA
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management.
Info:

owner
[1] Me

email
[1] me@somewhere.com

organization
[1] My Organization

Models:
name class package

1 frog:model1 unmarkedFitOccu unmarked

2 frog:model2 unmarkedFitOccu unmarked

Data:
name class rows cols package

1 frog:data unmarkedFrameOccu NA NA unmarked

# look at the original mymodels library; notice the frog analyses
have been removed, while the plant analyses have been retained
because they were not removed when subsetting the plant library

mymodels
Description:
[1] This AM Model Library stores analysis inputs (data) and analysis

outputs (models) associated with the AMModels package
vignette.
Info:

owner
[1] Me

email
[1] me@somewhere.com

organization
[1] My Organization

Models:
name class package

1 plant:model lm NA

2 apple:m1 list NA
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Saving the amModelLib object

You may save your amModelLib with either the save or saveRDS functions from the base

package.

The file argument should include the filepath where the .RData or.rda file will live. To call

up the amModelLib, the load or readRDS function can be used.

We envision that saved amModelLib objects will be used repeatedly as they contain a store-

house of models and datasets that can be retrieved for future use.

amModelLib organization

Users may maintain multiple amModelLibs to best meets their needs. For example, a single

amModelLibmay be used to:

• store models associated with a specific set of analyses, such as those included in an annual

report, a scientific paper, or a monitoring program;

• store models associated with a specific parameter of interest (e.g., all models related to apple

infestation rate);

Data:
name class rows cols package

1 plant:data data:frame 20 2 NA

2 apple:data data:frame 1 2 NA

# save mymodels to an.rda file (which can store multiple objects or
multiple libraries)

save(mymodels, file = "mymodels.rda")
# save frog.analyses to an.RDS file (which can store a single
library)

saveRDS(chorusFrogLibrary, file = "chorusFrogLibrary.RDS")

# load a stored.rda file

load("mymodels.rda")
# load a stored.rds file (which will store a single object, in this
case a single ammodelLib)

chorusFrogLibrary <- readRDS("chorusFrogLibrary.RDS")
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• store models associated with a specific species or research project (e.g., the chorus frog

analyses);

• store models by model type (all occupancy models);

• store all models by a particular person;

• etc.

Trial and error may reveal the best approach to meet the user’s needs. At some point, a

library may become quite large and cumbersome, and we hope the tools provided in this pack-

age allow users to reorganize amModelLib objects as needs change.

AMModels Shiny app

Many natural resource practitioners are time-crunched and may not work with R on a daily

basis, facilitating forgetfulness of R workflow and function names. This should not hamper

efforts to codify knowledge in the form of models. To that end, we introduce a Shiny applica-

tion called AMModel Manager. To use the application, you must have the shiny and shinyBS

packages installed. You can then launch the application with the function modelMgrwith no

arguments. When the application is launched, the R console will be "listening" and unavailable

for use.

The app enables a user to add, delete, and send amModel and amData objects from the

library to R’s global environment, and to work with their associated metadata. Once those

tasks are completed, the Model Manager is closed and the R console is then freed for additional

work.

The Shiny application can be resized as desired, and is divided into 5 main actions,

highlighted in red in Fig 6:

1. Locate, upload, or create an amModelLib object.

2. Search or subset the loaded amModelLib.

3. Edit a selected amModelLib content by adding or removing metadata, models, or data.

4. Bind an amModelLib object to R’s global environment, where it can be saved with the save

or saveRDS functions within R’s console.

5. View the result of actions taken.

Each of these will be briefly demonstrated.

Selecting an amModelLib

Use the blue button at the top of Fig 6 to (1) locate an amModelLib that is present in the

global environment, (2) create a new library, or (3) upload an .RData, .rda, or .RDS file

# launch the Model Manager

modelMgr()
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containing one. When the window first opens, the app will list the objects in your global envi-

ronment, with the filter to display only amModelLib objects active (Fig 7). An amModelLib

object may be selected from the list displayed if desired. In Fig 7, the chorusFrogLibrary has

been selected.

Alternatively, an amModelLib can be created by pressing the "New" button in the app (Fig

7). Creating a new amModelLib launches another dialogue box on top of the first one where

the user can specify the name of the new amModelLib, provide a description, and begin enter-

ing metadata associated with the library itself (e.g., Fig 8). The name must be a valid R object

name that does not start with a number or contain a space. If these are ignored, the name will

be coerced to a valid name using the make.names functions. The "Create amModelLib" button

at the bottom of the dialogue box adds the amModelLib object to the global environment,

loads it as the amModelLib chosen for editing in the Model Manager app, and closes the dia-

logue box. To cancel, choose "Close" at the lower right, or click anywhere outside of the dia-

logue box.

Finally, a user may press the Browse button to browse to an existing .RData or.rda file con-

taining one or more amModelLib objects, or an .RDS file containing a single amModelLib

object (Fig 9). For .RData and .rda files, all objects within the file are loaded into the global

environment and displayed as a list in the dialogue box where the user may select one. For

.RDS files, the amModelLib object is loaded into the global environment using the basename

of the uploaded file, minus the .RDS extension. In Fig 9, we browse to the amModelLib called

chorusFrogLibrary.RDS that was previously created in this vignette.

Editing contents of a loaded library

All edits are contained in the app itself; ultimately any edits will need to be saved as a new

object (library) to R’s global environment, where they can be saved to file when the app has

been closed. Pressing the right-pointing arrow that is highlighted in red will display a sum-

mary of current contents of the loaded library (Fig 10). Here, we discuss how edits within the

app are made.

Info/Metadata tab. The info/metadata tab contains information about the amModelLib

itself (Fig 10). The description field is a place to store notes about the contents of the amMo-

delLib, while the metadata consist of name-value pairs. Each name-value pair is entered by

Fig 6. The AMModels Model Manager application main window.

https://doi.org/10.1371/journal.pone.0188966.g006
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typing a name for each item and its corresponding value. The values are text fields of any

length. After entering a name-value pair, press the "thumbs-up" button to the left of the row to

add the item and create an empty row at the bottom of the table, where another pair may be

added. To remove a name- value pair, check the box to the left of the row and press the

thumbs-up button.

Models tab. The models tab lists the models (analysis outputs) in the amModelLib (Fig

11). The "Summary" button in each row opens a dialogue box that displays a summary of the

model in that row, invoking the summary method of the object’s class. Similarly, the "Edit"

button in each row opens a dialogue box that allows the user to edit the metadata associated

with the model of that row.

Additional models may be added by clicking the "Add model" button, which opens a dia-

logue box in which objects from the global environment may be selected for inclusion. The

Fig 7. The "Select amModelLib" window allows users to select a library that exists in R’s global environment.

https://doi.org/10.1371/journal.pone.0188966.g007
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action will convert the object into an amModel object and add it to the library. Once the new

model has been added, the user can return to the models tab and may press the "Edit" button

to supply metadata.

One or more models may be selected by checking the box to the left of the name. Alterna-

tively, all models may be selected or de-selected by pressing the button above the word "Select."

Four actions may be taken with selected items, which will be described shortly.

Data tab. The data tab lists the data in the amModelLib. Layout and function of the data

tab is identical to the models tab (Fig 12).

Actions available for selected components. Four actions can be performed with selected

components (Fig 13).

When an action is chosen it is performed on all selected components, both models and

data, even though only one of the models or data tab can be visible at a time. Actions are

selected using the buttons to the right of the tab-selection bar.

1. Delete. The "delete" action removes the selected components from the loaded amModelLib

object.

2. Create new amModelLib. This action sets the selected objects as a new, unsaved amModel-

Lib object. Pressing the right arrow button allows the user to see a summary of this new

library.

Fig 8. The "Create New amModelLib" window allows users to create a new library.

https://doi.org/10.1371/journal.pone.0188966.g008

AMModels: An R package for storing models, data, and metadata to facilitate adaptive management

PLOSONE | https://doi.org/10.1371/journal.pone.0188966 February 28, 2018 50 / 57

https://doi.org/10.1371/journal.pone.0188966.g008
https://doi.org/10.1371/journal.pone.0188966


3. Extract ("check out") an original object from the library to the global environment without

metadata (uses getAMModel or getAMData)

4. Extract ("check out") as a list the original object plus the metadata to the global environ-

ment (uses getAMModel or getAMData with the argument as.list = TRUE). This

extraction action, and the one above, immediately place the selected objects into the

global environment. Each object placed in the global environment is assigned the same

name as in the amModelLib object, replacing existing objects with the same name with-

out warning.

For the first two actions, pressing the right-arrow button will show a summary of the result-

ing amModelLib. (Extracting objects will not change the library.)

To undo all actions since the amModelLib was loaded, e.g. to undo accidentally deleting

some components, click the "revert" button above the search bar (the counter-clockwise arrow).

Fig 9. The "Upload file" window allows users to browse to an existing library that is stored as an.RDS or.rda file.

https://doi.org/10.1371/journal.pone.0188966.g009
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Searching for content

The search box allows users to search the models or datasets in the amModelLib using the

grepAMModelLib function. Enter a search term or expression in the box, choose whether to

search all models and data, just models, or just data, and click the magnifying glass button (Fig

14). A summary of the result of the search is displayed in the output preview pane when the

right arrow button is pressed. The results are contained in a new amModelLib within the app

itself.

Saving changes

All edits are contained in the app itself; ultimately any edits will need to be assigned to a new

object (library) and moved to R’s global environment, from where it can be saved to a file

using either the save or saveRDS functions in the R console.

To save all edits to the loaded library, press the right-arrow to preview the updated contents

of the loaded library. Next, supply a "New library name" at the top of the output preview pane

and press the "bind" button (with a disk icon which looks like a save button). This action places

the library in R’s global environment. If the name provided currently exists in the global envi-

ronment, the original library will be replaced with the updated library. If this action is success-

fully executed, a success indicator will flash on the screen. Then, once the app is closed, the

library within the global environment can be saved with the save or saveRDS functions.

Fig 10. The "Info/Metadata" tab allows users to work with the library’s metadata and info slots.

https://doi.org/10.1371/journal.pone.0188966.g010
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To create a new library that is a subset of objects in the loaded library, select the models and

data of interest, preview the results of the library subset by pressing the right arrow button,

then provide a unique "New library name" and press the "bind" button. If this action is success-

fully executed, a success indicator will flash on the screen. Once the library is placed in the

global environment, the app can be closed and the new amModelLib object can be saved to a

file using either the save or saveRDS functions. Be cautious of maintaining items that are

stored in multiple libraries.

Fig 11. The "Models" tab allows users to add newmodels, delete existingmodels, or sendmodels to R’s global environment.

https://doi.org/10.1371/journal.pone.0188966.g011

Fig 12. The "Data" tab allows users to add new datasets, delete existing datasets, or send datasets to R’s global environment.

https://doi.org/10.1371/journal.pone.0188966.g012
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Versioning

AMModels was developed under R version 3.2.2. We made an attempt to eliminate unneces-

sary dependencies and imports to minimize the chance that a dependent package update will

Fig 13. Models and data that are selected can be deleted, subset to a new library, or sent to R’s global environment in its original form or as a list.

https://doi.org/10.1371/journal.pone.0188966.g013

Fig 14. The "Search" panel allows users to search a library by term. Pressing the right arrow will display the result, which can be saved as a new library
by providing a name in the New object name box and pressing the Save button, which will bind this new library to R’s global environment, where the library can
be saved with the save or saveRDS function.

https://doi.org/10.1371/journal.pone.0188966.g014
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break functions in this package. The shiny user interface was developed under shiny 1.0.0; this

interface is completely dependent on the shiny package, and we expect that we will need to

update the shiny UI regularly due to the fast pace of shiny package development. Since the

premise of our package is long-term storage, we intend to retain backwards compatibility in

our updates to the greatest extent possible, short of asking users to stop updating R. We cannot

predict which datasets or analytical routines may be rendered incompatible with a new major

version of R or a new package version, so we recommend users note R and package versions in

their metadata to retain the information necessary to reproduce an analysis long into the

future.

Summary

Hallgren andWestberg [33] note, "Behind [the theory of AM] lies a strong, albeit implicit,

expectation that organizations aiming for AM have the capacity to communicate in a way that

facilitates the required coordination of the knowledge perspectives involved." Thus, at an

agency or organizational level, adaptive management requires knowledge management—

defined as the process of capturing, developing, sharing, and effectively using organizational

knowledge to fulfill its mission [34]. Models are a main ingredient of adaptive management

programs, and are a formal representation of knowledge. They play a key role in representing

uncertainty, can be compared with competing models, and can be used to predict the outcome

of a given management action [35]. The R package, AMModels, is a flexible and simple pack-

age intended to facilitate adaptive management efforts by storing models, along with datasets,

so that they can be used to aid in decision making. Although an adaptive management frame-

work includes many other critical ingredients [11,36,37], AMModelsmay provide a useful

tool in advancing the use of adaptive management.

The utility of AMModels, however, may be useful to those not engaged in an adaptive man-

agement setting. Preserving data, outputs, and metadata (that may include the analytical code)

can promote reproducibility of scientific analysis [38–40] and foster the use of models into the

future.

Supporting information

S1 Fig. Function cheat sheet for the R package, AMModels.

(PDF)

S1 Text. R script that used in the AMModels examples.

(TXT)
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