
Weighted k-Nearest-Neighbor Techniques

and Ordinal Classification

Klaus Hechenbichler
hechen@stat.uni-muenchen.de

Institut für Statistik, Ludwig-Maximilians-Universität München,

Akademiestraße 1, 80799 München, Germany

Klaus Schliep
k.p.schliep@massey.ac.nz

Allan Wilson Centre for Molecular Ecology and Evolution, Massey University,

Private Bag 11222, Palmerston North, New Zealand

13th October 2004

Abstract

In the field of statistical discrimination k-nearest neighbor classifica-
tion is a well-known, easy and successful method. In this paper we present
an extended version of this technique, where the distances of the near-
est neighbors can be taken into account. In this sense there is a close
connection to LOESS, a local regression technique. In addition we show
possibilities to use nearest neighbor for classification in the case of an or-
dinal class structure. Empirical studies show the advantages of the new
techniques.

1 Introduction

Based on the common nearest neighbor technique for classification we develop
a much more flexible tool, that extends the basic method in two directions.
First we introduce a weighting scheme for the nearest neighbors according to
their similarity to a new observation that has to be classified. Based on the
fact, that the voting of nearest neighbors is equivalent to the mode of the class
probability distribution, the second extension uses the median or the mean of
that distribution, if the target variable shows an ordinal or even higher scale
level. A R package called kknn with implementations for our technique is in
preparation and will be published soon.

One special combination of these two extensions, a weighted mean estimation,
builds the connection to the local regression technique LOESS and especially
to the Nadaraya-Watson estimator. Both are nicely summarized for example
in Chen et al. (2004) and Cleveland and Loader (1995).
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After a short description of the common kNN classification method in section 2,
we introduce our weighted technique in section 3 and the extension to ordinal
target variables in section 4. Then the empirical part in section 5 compares
the results of a study with four standard datasets for classification, one large
microarray problem and finally one set with ordinal structure in the target
variable.

2 k-Nearest-Neighbor Techniques (kNN)

The nearest neighbor method (Fix and Hodges (1951), see also Cover and Hart
(1967)) represents one of the simplest and most intuitive techniques in the
field of statistical discrimination. It is a nonparametric method, where a new
observation is placed into the class of the observation from the learning set
that is closest to the new observation, with respect to the covariates used. The
determination of this similarity is based on distance measures.

Formally this simple fact can be described as follows: Let

L = {(yi, xi), i = 1, . . . , nL}

be a training or learning set of observed data, where yi ∈ {1, . . . , c} denotes
class membership and the vector x′

i = (xi1, . . . , xip) represents the predictor
values. The determination of the nearest neighbors is based on an arbitrary
distance function d(., .). Then for a new observation (y, x) the nearest neighbor
(y(1), x(1)) within the learning set is determined by

d(x, x(1)) = mini (d(x, xi))

and ŷ = y(1), the class of the nearest neighbor, is selected as prediction for y.
The notation x(j) and y(j) here describes the jth nearest neighbor of x and its
class membership, respectively.

For example, such typical distance functions are the Euclidean distance

d(xi, xj) =

(

p
∑

s=1

(xis − xjs)
2

)
1
2

or the absolute distance

d(xi, xj) =

p
∑

s=1

|xis − xjs| .

In general, both measures can be seen as special cases of the so-called Minkowski
distance

d(xi, xj) =

(

p
∑

s=1

|xis − xjs|
q

)
1
q

.
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The Euclidean distance results for the selection q = 2, the absolute distance for
the parameter value q = 1.

The method has been explained by the random occurrence of the learning set, as
described in Fahrmeir et al. (1996). The class label y(1) of the nearest neighbor
x(1) of a new case x is a random variable. So the classification probability
of x into class y(1) is P(y(1)|x(1)). For large learning sets x and x(1) coincide
very closely with each other, so P(y(1)|x(1)) ≈ P(y|x) results approximately.
Therefore the new observation x is predicted as belonging to the true class y

with the probability approximately P(y|x).

A first extension of this idea, that is widely and commonly used in practice, is
the so-called k-nearest neighbor method. Here not only the closest observation
within the learning set is referred for classification, but also the k most similar
cases. The parameter k has to be selected by the user. Then the decision is in
favour of the class label, most of these neighbors belong to.

Let kr denote the number of observations from the group of the nearest neigh-
bors, that belong to class r:

c
∑

r=1

kr = k .

Then a new observation is predicted into the class l with

kl = maxr (kr) .

This prevents one singular observation from the learning set deciding about
the predicted class. The degree of locality of this technique is determined by
the parameter k: For k = 1 one gets the simple nearest neighbor method
as maximal local technique, for k → nL a global majority vote of the whole
learning set results. This implies a constant prediction for all new observations,
that have to be classified: Always the most frequent class within the learning
set is predicted.

3 Weighted k-Nearest-Neighbors (wkNN)

This extension is based on the idea, that such observations within the learning
set, which are particularly close to the new observation (y, x), should get a
higher weight in the decision than such neighbors that are far away from (y, x).
This is not the case with kNN: Indeed only the k nearest neighbors influence
the prediction; however, this influence is the same for each of these neighbors,
although the individual similarity to (y, x) might be widely different. To reach
this aim, the distances, on which the search for the nearest neighbors is based
in the first step, have to be transformed into similarity measures, which can be
used as weights.
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Standardization of covariates

Thus again in the first step the k nearest neighbors are selected according to
the Minkowski distance. As before, for that purpose one needs two parameters:
The number of neighbors k and the Minkowski parameter q for selection of the
distance measure.

To put equal weight on each covariate in computing the distances, one has
to standardize the values. In the case of ratio or difference scale level, this
aim is reached simply by dividing the variables by their standard deviation.
Subtraction of the mean is not necessary, as this operation has no influence on
the distances between observations.

For ordinal covariates with m classes we offer two procedures: They can be
treated in the same way as variables of ratio scale level, or be transformed into
m−1 dummy variables. For example, if there are 5 ordinal classes, the following
dummy variables v1, . . . , v4 result from this transformation:

class v1 v2 v3 v4

1 1 1 1 1
2 -1 1 1 1
3 -1 -1 1 1
4 -1 -1 -1 1
5 -1 -1 -1 -1

When computing differences between two observations, the number of non zero
columns corresponds to the difference of order between them. This second
approach always treats distances in a proportional, linear way independently of
the Minkowski parameter.

In a similar way dummy variables for nominal covariates with m classes can be
derived. As there is no reference category when working with distances, one
needs m dummy variables:

class v1 v2 v3 v4 v5

1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 0 0 0 1 0
5 0 0 0 0 1

Here there is either no difference if the observations are identical, or two non
zero columns if they belong to different classes.

Now the problem arises of how to standardize these dummy variables. We offer
a standardization technique for both kinds of dummy variables, that is based
on the trace of the covariance matrix of the corresponding dummies. We ignore
the correlation structure and use the term

√

√

√

√

1

m

m
∑

i=1

var(vi) rsp.

√

√

√

√

1

m − 1

m−1
∑

i=1

var(vi)
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as a normalizing divisor for nominal, and respectively ordinal, covariates. This
standardization of all corresponding dummy variables with the same (averaged)
standard deviation is necessary, as differences between classes should be treated
symmetrically, regardless of the differences in the standard deviations of the
single dummy variables.

Furthermore, without an additional correction covariates with many classes
would get more weight than others, as they produce more dummy variables,
which all would contribute in the same way to the distance measure as one
single metric variable. So when computing the distances, all differences between
corresponding dummies are weighted by 1

m−1 or 1
m

respectively, if the original
covariate has ordinal or nominal scale level.

Of course, standardization with the mean variances of the dummy variables will
differ from the exact treatment of metric variables, but this approach seems
better than not handling categorical variables at all.

The standardization of all kinds of covariates is only based on the observations
from the learning set. One could also add the x values of all new cases that
have to be classified before the standardization step, but we believe that it
is more consistent and comparable to standardize all new observations by the
same factors. Then the results only depend on the values within the learning
set.

Few authors address the issue of how to include nominal and ordinal covariates
within distance measures, but alternative treatments for categorical variables
can be found for example in Fahrmeir et al. (1996) and Cost and Salzberg
(1993).

Weighting scheme for neighbors

The transition from distances to weights then follows in the second step accord-
ing to any arbitrary kernel function. These are functions K(.) of the distances
d with maximum in d = 0 and values, that get smaller with growing absolute
value of d. Thus the following properties must hold:

• K(d) ≥ 0 for all d ∈ R

• K(d) gets its maximum for d = 0

• K(d) descents monotonously for d → ±∞

Typical examples for this kind of function are the following:

• rectangular kernel 1
2 · I(|d| ≤ 1)

• triangular kernel (1 − |d|) · I(|d| ≤ 1)

• Epanechnikov kernel 3
4(1 − d2) · I(|d| ≤ 1)

• quartic or biweight kernel 15
16(1 − d2)2 · I(|d| ≤ 1)
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• triweight kernel 35
32(1 − d2)3 · I(|d| ≤ 1)

• cosine kernel π
4 cos(π

2 d) · I(|d| ≤ 1)

• Gauss kernel 1√
2π

exp
(

−d2

2

)

• inversion kernel 1
|d|

In the case of distances, which are defined as strictly positive values, of course
only the positive domain of K has to be used. In this sense the choice of the
kernel is the third parameter of this technique. But from experience the choice
of a special kernel (apart from the special case of the rectangular kernel, that
gives equal weights to all neighbors) is not crucial.

Every kernel function needs either a window width, if the values become zero
in a certain distance from the maximum value, or a dispersion parameter, if
the values are larger than zero for all d ∈ R. In wkNN both are selected
automatically according to the distance of the first neighbor x(k+1), that is not
taken into consideration any more. This is done implicitly by standardization
of all other distances with the distance of the (k + 1)th neighbor:

D(x, x(i)) =
d(x, x(i))

d(x, x(k+1))
for i = 1, . . . , k

These standardized distances always take values within the interval [0, 1]. In
our implementation we add a small constant ǫ > 0 to d(x, x(k+1)) in order to
avoid weights of 0 for some of the nearest neighbors. This could happen if one
or more of these neighbors show exactly the same distance as the (k + 1)th,
as most of the kernels become 0 at the window boundary D = 1. This band
width of 1 is an adequate choice, as all observations with a larger distance from
x than the kth neighbor have no influence on the prediction. So the choice of
the band width is adaptively based on the data.

Summary of wkNN

After determination of the similarity measures for the observations in the learn-
ing set, each new case (y, x) is classified into the class with the largest added
weight

maxr

(

k
∑

i=1

K(D(x, x(i)))I(y(i) = r)

)

.

Both kNN and NN can be seen as special cases of wkNN: kNN results for a
choice of the rectangular kernel, NN results for k = 1, independently of the
chosen kernel function.

The main target of this extended method is to gain a technique, that up to a
certain degree is independent of a bad choice for k resulting in a high misclas-
sification error. Now this number of nearest neighbors is implicitly hidden in
the weights: If k is too large k is adjusted to a lower value automatically. In
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this case a small number of neighbors with large weights dominates the other
neighbors, whose classes have no influence on the prediction because of their
low weights.

The algorithmic structure of wkNN is shown below as a summary. As men-
tioned before, the common nearest neighbor techniques are special cases of this
algorithm.

Weighted k-Nearest-Neighbor classification (wkNN)

1. Let L = {(yi, xi), i = 1, . . . , nL} be a learning set of observations xi with
given class membership yi and let x be a new observation, whose class
label y has to be predicted.

2. Find the k + 1 nearest neighbors to x according to a distance function
d(x, xi).

3. The (k + 1)th neighbor is used for standardization of the k smallest dis-
tances via

D(i) = D(x, x(i)) =
d(x, x(i))

d(x, x(k+1))
.

4. Transform the normalized distances D(i) with any kernel function K(.)
into weights w(i) = K(D(i)).

5. As prediction for the class membership y of observation x choose the class,
which shows a weighted majority of the k nearest neighbors

ŷ = maxr

(

k
∑

i=1

w(i)I(y(i) = r)

)

.

In general these methods, wkNN and also simpler nearest neighbor techniques
can be seen as voting or ensemble methods in this sense: Some potential clas-
sifiers (the nearest neighbors) are aggregated by a (weighted) majority vote
and this aggregated result is used as prediction. This shows a certain similar-
ity to modern ensemble techniques like bagging or boosting (Breiman (1996),
Friedman et al. (2000)).

4 Using wkNN for Ordinal Classification

A second extension, that is independent of the weighting method, results from
the question how to cope with target variables with different scale level. The
classification version of wkNN described above is concieved to predict nominal
classes and works with a weighted majority vote of the nearest neighbors. This
proceeding can also be described as using the mode of the estimated class
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probability distribution, that results from the standardized added weights for
each class label:

P̂ (y = r|x, L) =

∑k
i=1 w(i)I(y(i) = r)
∑k

i=1 w(i)

Based on this fact, it seems only natural to use the median of this distribution
for the prediction of an ordinal target variable. Furthermore the prediction of
a metric target variable with an even higher scale level could be done via the
mean of the distribution.

Using this mean shows a strong connection to the local regression technique
LOESS. Here the residual sum of squares of a localized regression problem is
minimized:

minβ

nL
∑

i=1

(yi − β0 − β1(xi − x))2 K

(

xi − x

d(x, x(k))

)

If no covariates are considered, one gets the special case of the Nadaraya-Watson
estimator, a local smoothing technique that uses piecewise constant regression
functions. This means that the prediction is simply the weighted mean of all
observations within the local window:

ŷ = E(y|x) =

∑nL

i=1 K
(

xi−x
d(x,x(k))

)

yi

∑nL

i=1 K
(

xi−x
d(x,x(k))

) =

∑k
i=1 w(i)y(i)
∑k

i=1 w(i)

This is exactly the behaviour of wkNN when using the mean of the class dis-
tribution.

In this sense Nadaraya-Watson can also be seen as a special case of wkNN and
forms the point of intersection with LOESS. The only differences are that on the
one hand, wkNN offers a large variety of possible kernel functions in order to
produce different weighting schemes, while LOESS works only with the tricube
kernel

K(d) =
70

81
(1 − |d|3)3 · I(|d| ≤ 1) .

On the other hand the standardization of the distances is based on the (k+1)th
neighbor instead of the kth in LOESS. Thus the kth neighbor still has influence
on the prediction, which fits in a better way to a nearest neighbor technique
that has its origin in the common kNN method.

As working with the mean of the class distribution, in other words with Nadaraya-
Watson or LOESS without covariates, does not lead to new insights, the crucial
point of this work is the classification context with a special view on the field
of ordinal prediction via the median of the class distribution. This point is
not covered by the regression technique LOESS, which is designed for metric
variables. Nevertheless, we point out that Nadaraya-Watson estimation will be
completely available within the kknn-package.
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5 Empirical Studies

5.1 Study Design

In this section we compare weighted nearest neighbor approaches to simpler
variants, that do not use weights on the data. For that purpose the number
k of nearest neighbors as well as the Minkowski parameter q and the kernel
function K(.) are changed systematically. The results of one example with
ordinal class structure are of special interest.

The evaluation of the methods is based on the raw misclassification error rate
1
n

∑n
i=1 I(yi 6= ŷi). In the case of ordinal class structure additional measures

should be used, which take into account, that a larger distance is a more severe
error than a wrong classification into a neighbor class. Therefore we use the
mean absolute value of the differences 1

n

∑n
i=1 |yi − ŷi| and the mean squared

difference 1
n

∑n
i=1(yi − ŷi)

2, which penalizes larger differences even harder.

Of course these measures are based on test error, as the resubstitution error
always is zero when using nearest neighbor techniques. Therefore we divide
the dataset at random into two parts consisting respectively of one third and
two thirds of the observations. The larger (learning) dataset is used as set of
prototypes and the observations of the smaller (test) dataset are predicted. We
use 50 different random splits into learning and validation set and give the mean
over these splits as result.

5.2 Datasets

The Wisconsin breast cancer dataset, originally collected at the University of
Wisconsin Hospitals in Madison, is taken from the extensive data archives of the
University of California in Berkeley. It is a standard dataset, which has been
used many times as an example in evaluating new classification techniques, for
example Breiman (1998), and is available on the internet via
http://www.ics.uci.edu/∼mlearn/MLRepository.html.
The target variable is binary and describes the malignancy of a tumor, 9 ordinal
biochemical measures are used as covariates. All observations with missing
values were deleted, so 683 out of 699 observations remain in the dataset.

The glass identification dataset is taken from the data archives of the University
of California. The target variable is the industrial usage of glass material, which
is measured in 6 classes, the independent variables are 9 chemical indicators.
The dataset consists of 214 cases without missing values.

The ionosphere dataset from the data archives in Berkeley describes radar sig-
nals, that are measured by 34 metric variables. The binary target variable is
the quality of the admission (good or bad). All in all 351 observations without
missing values are considered.

9



The soybean dataset again is one of the standard datasets from the data archives
of the University of California. In contrast to the other datasets the target
variable has a large number of different classes (15). After deletion of all obser-
vations with one or more missing values 266 cases remain. While the dependent
variable describes the kind of disease of a soybean plant, the 35 covariates rep-
resent climatic as well as other biological factors.

The SRBCT dataset is presented in Kahn et al. (2001) and contains expression
values of 2308 genes for 83 Single Round Blue Cells Tumor patients, each com-
ing from one out of 4 different classes (EWS, BL, NB and RMS). These data
were published via
http://www.thep.lu.se/pub/Preprints/01/lu tp 01 06 supp.html.
After preprocessing the selected genes were standardized. This is a typical ex-
ample for the problem of microarray analysis, where there are a huge number
of variables, but only a few observations are available.

Finally, the scapula dataset (Feistl & Penning, not published yet) are part of a
dissertation written at the Institut für Rechtsmedizin der LMU München. The
aim was to predict age of dead bodies only by means of the scapula. Therefore a
lot of measures, implying angles, lengths, descriptions of the surface, etc. were
provided. We preselected 15 important covariates to predict age, which was
splitted into 8 distinct ordinal classes, each covering ten years. The dataset
consists of 153 complete observations.

5.3 Results

k q kernel test error k q kernel test error

1 1 rectangular 0.035 5 1 rectangular 0.033
triangular 0.035 triangular 0.033

biweight 0.035 biweight 0.035
2 rectangular 0.043 2 rectangular 0.032

triangular 0.043 triangular 0.036
biweight 0.043 biweight 0.040

3 1 rectangular 0.032 7 1 rectangular 0.034
triangular 0.035 triangular 0.030

biweight 0.034 biweight 0.033
2 rectangular 0.034 2 rectangular 0.032

triangular 0.040 triangular 0.032
biweight 0.042 biweight 0.038

Table 1: Misclassification error for Wisconsin breast cancer data

We now consider the misclassification errors for the first 4 datasets. In the
Wisconsin breast cancer data (Table 1) there is almost no variation in the error
rate. This classification problem seems to be too simple to produce significant
differences between the techniques. For the glass (Table 2), ionosphere (Table
3) and soybean (Table 4) datasets, a small value of k seems to be the best
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k q kernel test error k q kernel test error

1 1 rectangular 0.276 5 1 rectangular 0.330
triangular 0.276 triangular 0.274

biweight 0.276 biweight 0.269
2 rectangular 0.304 2 rectangular 0.356

triangular 0.304 triangular 0.305
biweight 0.304 biweight 0.302

3 1 rectangular 0.305 7 1 rectangular 0.345
triangular 0.276 triangular 0.277

biweight 0.279 biweight 0.271
2 rectangular 0.330 2 rectangular 0.355

triangular 0.308 triangular 0.307
biweight 0.307 biweight 0.300

Table 2: Misclassification error for glass data

choice. Without weighting the error rates increase with growing number of k.
By using weights, no matter which kind of kernel is used, the results for higher
k again reach the optimal results. Thus the advantage of the weighting method
shows in the fact, that a kind of automatic adjustment of k takes place: If k is
chosen too high the weights reduce the influence of neighbors that are too far
away from the new observation. Thus this desired property could be verified
empirically.

k q kernel test error k q kernel test error

1 1 rectangular 0.096 5 1 rectangular 0.119
triangular 0.096 triangular 0.099

biweight 0.096 biweight 0.098
2 rectangular 0.136 2 rectangular 0.163

triangular 0.136 triangular 0.133
biweight 0.136 biweight 0.130

3 1 rectangular 0.111 7 1 rectangular 0.125
triangular 0.099 triangular 0.102

biweight 0.099 biweight 0.100
2 rectangular 0.156 2 rectangular 0.172

triangular 0.136 triangular 0.135
biweight 0.134 biweight 0.128

Table 3: Misclassification error for ionosphere data

For the microarray data, the most interesting point is the comparison of the
nearest neighbor results with other classification techniques. Therefore we em-
ploy a variety of classical and modern methods. First, in addition to our nearest
neighbor techniques we apply a recent method called prediction analysis of mi-
croarray (PAM) which was especially designed for high-dimensional microarray
data (Tibshirani et al. (2002)) and works without gene selection. PAM is based
on shrunken centroids and necessitates the choice of the shrinkage parameter
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k q kernel test error k q kernel test error

1 1 rectangular 0.116 5 1 rectangular 0.177
triangular 0.116 triangular 0.127

biweight 0.116 biweight 0.120
2 rectangular 0.137 2 rectangular 0.197

triangular 0.137 triangular 0.135
biweight 0.137 biweight 0.126

3 1 rectangular 0.157 7 1 rectangular 0.201
triangular 0.118 triangular 0.135

biweight 0.116 biweight 0.125
2 rectangular 0.172 2 rectangular 0.218

triangular 0.125 triangular 0.141
biweight 0.133 biweight 0.130

Table 4: Misclassification error for soybean data

δ. The number of genes used to compute the shrunken centroids depends on
this parameter. A possible choice is δ = 0: All genes are used to compute the
centroids. Also a selection method for an optimal value of δ by cross-validation
is proposed. In our study, we apply both approaches. The PAM method is
implemented in the R library pamr. Next we use a promising technique called
partial least squares (PLS): New components are determined by PLS dimension
reduction and LDA is performed on these new components (Nguyen and Rocke
(2002)). We use successive numbers of PLS components. These results were
already published in Boulesteix (2004). Furthermore some modern techniques
like bagging (Breiman (1996)) and different boosting algorithms (Friedman et
al. (2000)), both based on standard classification trees (CART), as well as
support vector machines SVM (Furey et al. (2000)) are applied. For SVM
we use the implementation from the R library e1071. Finally, classical linear
discriminant analysis (LDA) is performed on these data.

For most of these techniques we need a variable or gene selection method, as
coping with more than two thousand variables is not possible. Here the genes
are ranked according to the BSS

WSS
-statistic, that for gene s is computed as follows:

BSSs

WSSs

=

∑c
r=1

∑

i:yi=r(µ̂sr − µ̂s)
2

∑c
r=1

∑

i:yi=r(xis − µ̂sr)2

BSS means between group sum of squares, WSS within group sum of squares.
Furthermore µ̂s denotes the sample mean of xs, while µ̂sr is the sample mean
of xs within class r. This kind of variable selection is performed separately for
the learning data of each random split of the data set.

This comparison in Table 5 shows, that CART and also ensemble techniques
based on this method like bagging and boosting, which are known to improve
CART significantly, do not perform very well. For this data LDA and PAMR
give lower error rates and SVM reduces the error beyond 2 %. Results for PLS
improves dramatically when a larger number of components are used. Finally,
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technique test error

PAMR (δ = 0) 0.066
PAMR (optimal δ) 0.024

1 PLS 0.362
3 PLS 0.052
5 PLS 0.008

LDA (10 genes) 0.085
LDA (20 genes) 0.041

SVM (100 genes) 0.013

CART (100 genes) 0.177
Bagging 0.070
Discrete AdaBoost 0.069
Gentle AdaBoost 0.065

NN (100 genes) 0.009
5NN (100 genes) 0.013
w5NN (100 genes) 0.006

Table 5: Misclassification error for SRBCT data

nearest neighbor performs best, and our weighting technique shows the lowest
misclassification error over all methods tested. This is a very satisfying result,
as microarray problems play a very important role in modern biostatistics.

When interpreting the ordinal results concerning the scapula data (Table 6),
the distance measures between true and predicted values are of special interest,
as these measures take into account the ability to consider ordinal structure.
Here the choice k = 1 seems to give the best results, if one ignores ordinality
and simply uses mode instead of median. For higher k the error rates of kNN
increase, but can again be lowered by the use of weighting techniques.

When using the suitable median in order to take ordinality within the target
variable into account the error rates for every single parameter combination
decrease in comparison to the mode, which is a very strong result. However,
surprisingly now mostly the unweighted kNN results seem to dominate.

Apart from the satisfying empirical results, the major advantage of nearest
neighbor techniques is the computation time. In comparison to other modern
ordinal classification techniques, for example ordinal boosting (Tutz & Hechen-
bichler (2004)), which sometimes give slightly better results, the corresponding
wkNN results can be computed within only a few seconds.

6 Concluding Remarks

In summary the results of wkNN for classification of nominal scaled target
variables are very promising, as choosing a too large value of k gets implicitly
corrected by using a weighting scheme. Especially in the topical and difficult
case of microarray data, nearest neighbor techniques in general, but especially
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technique k q kernel misclassification absolute distance squared distance

nominal (mode) 1 1 rectangular 0.653 0.967 1.841
triangular 0.653 0.967 1.841

biweight 0.653 0.967 1.841
2 rectangular 0.629 0.914 1.695

triangular 0.629 0.914 1.695
biweight 0.629 0.914 1.695

3 1 rectangular 0.665 1.047 2.147
triangular 0.647 0.958 1.824

biweight 0.651 0.962 1.831
2 rectangular 0.653 1.021 2.051

triangular 0.632 0.918 1.709
biweight 0.630 0.915 1.697

5 1 rectangular 0.647 0.985 1.918
triangular 0.642 0.938 1.740

biweight 0.648 0.949 1.780
2 rectangular 0.647 0.977 1.881

triangular 0.626 0.909 1.685
biweight 0.633 0.922 1.717

7 1 rectangular 0.655 0.993 1.924
triangular 0.633 0.916 1.666

biweight 0.643 0.936 1.735
2 rectangular 0.646 0.996 1.968

triangular 0.615 0.877 1.573
biweight 0.631 0.919 1.709

ordinal (median) 1 1 rectangular 0.653 0.967 1.841
triangular 0.653 0.967 1.841

biweight 0.653 0.967 1.841
2 rectangular 0.629 0.914 1.695

triangular 0.629 0.914 1.695
biweight 0.629 0.914 1.695

3 1 rectangular 0.607 0.847 1.451
triangular 0.648 0.941 1.762

biweight 0.651 0.959 1.817
2 rectangular 0.620 0.852 1.432

triangular 0.632 0.896 1.613
biweight 0.628 0.902 1.644

5 1 rectangular 0.610 0.822 1.355
triangular 0.628 0.865 1.482

biweight 0.642 0.915 1.670
2 rectangular 0.620 0.832 1.357

triangular 0.625 0.847 1.420
biweight 0.629 0.889 1.585

7 1 rectangular 0.622 0.824 1.329
triangular 0.622 0.828 1.360

biweight 0.632 0.876 1.531
2 rectangular 0.617 0.820 1.330

triangular 0.608 0.806 1.305
biweight 0.623 0.864 1.502

Table 6: Error rates for scapula data

wkNN, perform very well. Finally, in the field of ordinal classification the use
of the median instead of the mode improves the results of nearest neighbor
techniques. By using the mean instead of median or mode one gets the classical
Nadaraya-Watson estimator for local smoothing, which is also included in our
wkNN package.

In general local techniques are known to be inadequate for high dimensional
data because of the curse of dimensionality. It must be emphasized that in
many practical problems, especially in the field of microarray data, that are
always extremely high dimensional, nearest neighbor techniques give quite good
results. One possible explanation for this statement is, that the problem of
high dimensionality appears especially when estimating a statistical model with
many parameters for the huge amount of covariates. On the contrary nearest
neighbor techniques do not estimate any parameters; instead the prediction is
based on prototypes. For this reason further investigation of nearest neighbor
techniques (using mode, median or mean of the class probability distribution)
seems to be a worthwhile task.

Alternative weighting schemes are mentioned in other works, but they show
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fundamental differences to our wkNN method. For example, the technique in
Fahrmeir et al. (1996) selects a fixed number of neighbors for every possible
class r (r = 1, . . . , c) and the classification is based on the mean distance of a
new observation to these class representatives. On the other hand, in wkNN,
the question, ”how many of the nearest neighbors out of the complete dataset
fall into the different classes”, is of great importance. Thus there is a much
closer connection to the classical kNN technique, which is exclusively based on
these counts. The weights in wkNN only play a role in the final classification
step.

Paik and Yang (2004) use combinations of many kNN classifiers with different
values for k and different subsets of covariates to improve the results of one
single kNN prediction. This method is called adaptive classification by mixing
(ACM). It also works with weights, but instead of weighting the observations
of the learning set, a weighting scheme for the whole classifiers based on their
classification probabilities is computed.

Flexible metric nearest neighbor classification by Friedman (1994) introduces
a third completely different idea for a weighting scheme: Here local flexible
weights for the covariates are used in order to consider their local relevance,
that is estimated by recursive partitioning techniques. So again no weighting
of the observations occurs.

Finally, we note that one important problem still can not be solved by using
weights in nearest neighbor techniques: The critical point of variable selection.
Too many covariates, that vary completely at random and have no predictive
power for the target variable, can disturb the prediction severely.
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