When running cutpointr, a ROC curve is by default
returned in the column roc_curve. This ROC curve can be
plotted using plot_roc. Alternatively, if only the ROC
curve is desired and no cutpoint needs to be calculated, the ROC curve
can be created using roc() and plotted using
plot_cutpointr. The roc function, unlike
cutpointr, does not determine direction,
pos_class or neg_class automatically.
library(cutpointr)
roc_curve <- roc(data = suicide, x = dsi, class = suicide,
    pos_class = "yes", neg_class = "no", direction = ">=")
auc(roc_curve)## [1] 0.9237791## # A tibble: 6 × 9
##   x.sorted    tp    fp    tn    fn    tpr   tnr     fpr   fnr
##      <dbl> <dbl> <dbl> <int> <int>  <dbl> <dbl>   <dbl> <dbl>
## 1      Inf     0     0   496    36 0      1     0       1    
## 2       11     1     0   496    35 0.0278 1     0       0.972
## 3       10     2     1   495    34 0.0556 0.998 0.00202 0.944
## 4        9     3     1   495    33 0.0833 0.998 0.00202 0.917
## 5        8     4     1   495    32 0.111  0.998 0.00202 0.889
## 6        7     7     1   495    29 0.194  0.998 0.00202 0.806Alternatively, we can map the standard evaluation version
cutpointr to the column names. If direction
and / or pos_class and neg_class are
unspecified, these parameters will automatically be determined by
cutpointr so that the AUC values for all variables will
be \(> 0.5\).
We could do this manually, e.g. using purrr::map, but to
make this task more convenient multi_cutpointr can be used
to achieve the same result. It maps multiple predictor columns to
cutpointr, by default all numeric columns except for the
class column.
mcp <- multi_cutpointr(suicide, class = suicide, pos_class = "yes", 
                use_midpoints = TRUE, silent = TRUE) 
summary(mcp)## Method: maximize_metric 
## Predictor: age, dsi 
## Outcome: suicide 
## 
## Predictor: age 
## -------------------------------------------------------------------------------- 
##  direction    AUC   n n_pos n_neg
##         <= 0.5257 532    36   496
## 
##  optimal_cutpoint sum_sens_spec    acc sensitivity specificity tp fn  fp tn
##              55.5        1.1154 0.1992      0.9722      0.1431 35  1 425 71
## 
## Predictor summary: 
##     Data Min. 5% 1st Qu. Median    Mean 3rd Qu.   95% Max.      SD NAs
##  Overall   18 19      24   28.0 34.1259   41.25 65.00   83 15.0542   0
##       no   18 19      24   28.0 34.2218   41.25 65.50   83 15.1857   0
##      yes   18 18      22   27.5 32.8056   41.25 54.25   69 13.2273   0
## 
## Predictor: dsi 
## -------------------------------------------------------------------------------- 
##  direction    AUC   n n_pos n_neg
##         >= 0.9238 532    36   496
## 
##  optimal_cutpoint sum_sens_spec    acc sensitivity specificity tp fn fp  tn
##               1.5        1.7518 0.8647      0.8889      0.8629 32  4 68 428
## 
## Predictor summary: 
##     Data Min.   5% 1st Qu. Median   Mean 3rd Qu.  95% Max.     SD NAs
##  Overall    0 0.00       0      0 0.9211       1 5.00   11 1.8527   0
##       no    0 0.00       0      0 0.6331       0 4.00   10 1.4122   0
##      yes    0 0.75       4      5 4.8889       6 9.25   11 2.5498   0data, roc_curve, and
bootThe object returned by cutpointr is of the classes
cutpointr, tbl_df, tbl, and
data.frame. Thus, it can be handled like a usual data
frame. The columns data, roc_curve, and
boot consist of nested data frames, which means that these
are list columns whose elements are data frames. They can either be
accessed using [ or by using functions from the tidyverse.
If subgroups were given, the output contains one row per subgroup and
the function that accesses the data should be mapped to every row or the
data should be grouped by subgroup.
library(dplyr)
library(tidyr)
opt_cut_b_g |> 
  group_by(subgroup) |> 
  select(subgroup, boot) |> 
  unnest(cols = boot) |> 
  summarise(sd_oc_boot = sd(optimal_cutpoint),
            m_oc_boot  = mean(optimal_cutpoint),
            m_acc_oob  = mean(acc_oob))## # A tibble: 2 × 4
##   subgroup sd_oc_boot m_oc_boot m_acc_oob
##   <chr>         <dbl>     <dbl>     <dbl>
## 1 female        0.766      2.17     0.880
## 2 male          1.51       2.92     0.806By default, the output of cutpointr includes the
optimized metric and several other metrics. The add_metric
function adds further metrics. Here, we’re adding the negative
predictive value (NPV) and the positive predictive value (PPV) at the
optimal cutpoint per subgroup:
cutpointr(suicide, dsi, suicide, gender, metric = youden, silent = TRUE) |> 
    add_metric(list(ppv, npv)) |> 
    select(subgroup, optimal_cutpoint, youden, ppv, npv)## # A tibble: 2 × 5
##   subgroup optimal_cutpoint   youden      ppv      npv
##   <chr>               <dbl>    <dbl>    <dbl>    <dbl>
## 1 female                  2 0.808118 0.367647 0.993827
## 2 male                    3 0.625106 0.259259 0.982301In the same fashion, additional metric columns can be added to a
roc_cutpointr object:
roc(data = suicide, x = dsi, class = suicide, pos_class = "yes",
    neg_class = "no", direction = ">=") |> 
  add_metric(list(cohens_kappa, F1_score)) |> 
  select(x.sorted, tp, fp, tn, fn, cohens_kappa, F1_score) |> 
  head()## # A tibble: 6 × 7
##   x.sorted    tp    fp    tn    fn cohens_kappa F1_score
##      <dbl> <dbl> <dbl> <int> <int>        <dbl>    <dbl>
## 1      Inf     0     0   496    36       0        0     
## 2       11     1     0   496    35       0.0506   0.0541
## 3       10     2     1   495    34       0.0931   0.103 
## 4        9     3     1   495    33       0.138    0.15  
## 5        8     4     1   495    32       0.182    0.195 
## 6        7     7     1   495    29       0.301    0.318