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Overview

Longitudinal data often has follow-up times that are irregular and potentially related to outcomes. For example,
in a clinic-based cohort study where all follow-up is part of usual care, patients may visit more often when
unwell. This risks over-estimating the burden of disease unless data are analysed appropriately.

There are two categories of methods available for analysing this type of data: methods based on inverse-
intensity weighting, and methods based on semi-parametric joint models (see Pullenayegum and Lim (In Press)
for an overview). This package provides methods for inverse-intensity weighting.

Inverse-intensity weighting weights data by the reciprocal of the intensity (or, equivalently, the hazard) of the
visit process. Inverse-intensity weighting works in a similar way to survey weighting: observations with a higher
intensity are over-represented in the data, and hence should receive less weight. Conversely, observations
with lower intensity are under-represented in the data, and hence receive more weight. Lin, Scharfstein, and
Rosenheck (2004) show that inverse-intensity weighting followed by a marginal analysis with a generalized
estimating equation (GEE) results in unbiased estimation, subject to the assumptions set out below. This
package contains functions to compute inverse-intensity weights, and also to fit inverse-intensity weighted
GEEs.

Sometimes inference may be desired for a model for which weighting is not straightforward, for example a
generalized linear mixed model or a latent class mixed model. In these cases, multiple outputation is a useful
alternative to invese-intensity weighting.

Multple outputation works by discarding (outputting) excess data (Hoffman, Sen, and Weinberg 2001;
Follmann, Proschan, and Leifer 2003). Visits are randomly deleted from the dataset with probability inversely
proportional to the visit intensity (Pullenayegum 2016). The resulting thinned visit process is independent of the
outcome process (subject to the assumptions below), and can hence be analysed using standard methods. To
avoid wasting data, the random deletion is repeated multiple times and the results from each analysis
combined. Conceptually, multiple outputation is the opposite of multiple imputation: where multiple imputation
imputes missing observations multiple times, multiple outputation discards excess observations multiple times.
This package contains functions to create outputted datasets, as well as to combine results across multiple
outputations.

Assumptions

Inverse-intensity methods, whether implemented through weighting or multiple outputation, are subject to the
following assumptions.

Suppose  is the outcome of interest for subject  at time , let  be a possibly time-dependent
covariate, and suppose interest is in the marginal model

Moreover, suppose that we observe  only at times . Let  be the counting process
for the visit times, that is , where  is an indicator function. Inverse-intensity

weighting methods hinge on there being a vector of observed covariates  such that

for some hazard function . If this assumption is not met, altnerative methods of analysis should be considered
(e.g. semi-parametric joint models).

Inverse-Intensity weighting

The first step in inverse-intensity weighting is to calculate the weights, usually by fitting a proportional hazards
model to the recurrent event process formed by the visit times. That is, one fits the model

The inverse-intensity weight is then . Following Buzkova and Lumley (2007), all inverse-

intensity weights in this package are stabilized by the baseline hazard , so that the stabilized weight is 
. In some settings one may additionally wish to stabilize by a function of the time-
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invariant covariates in , and an option to do so is included in the functions. One can then fit a GEE to
obtain the regression coefficients  corresponding to regressing  on , weighting by .

Example

This package includes data from a randomized trial of thiotepa vs. placebo for the treatment of superficial
bladder tumours (Byar and Blackard 1977, Andrews and Herzberg (1985)). At each visit, the number of new
tumours (value) and the size of the largest tumour (size) were recorded. For the purposes of illustration, we
focus on the relationship between the size of the largest tumour and randomized group (Group), adjusting for
time since enrolling in the trial.

library(IrregLong)

data(datalong)

head(datalong)

##   id basesize Group time value basenum size event

## 1  1        3     0    0     1       1    3     1

## 2  1        3     0    1     0       1    0     1

## 3  2        1     0    0     2       2    1     1

## 4  2        1     0    1     0       2    0     1

## 5  2        1     0    4     0       2    0     1

## 6  3        1     0    0     1       1    1     1

iiwgee <- iiwgee(formulagee=size~time + Group,

 formulaph=Surv(time.lag,time,event)~ Group*as.numeric(value.lag>1) + cluster(id),

 formulanull=NULL,data=datalong,id="id",time="time",event="event",lagvars=c("time","value"),

 invariant=c("id","basesize","Group","basenum"),maxfu=NULL,first=1)

This fits an inverse-intensity weighted GEE, stabilized by just the baseline hazard. In this case the recurrent
events model for the visits is a proportional hazards model in which visit intensity is regressed onto randomized
group, whether there was more than one new tumour at the last visit, and their interaction. Notice that the
recurrent events model (formulaph) includes variables that are not in the original dataset. By including time and
value in the lagvars parameter, the iiwgee function creates two new variables, time.lag and value.lag, that
are equal to time and value at the previous visit.

The function returns the inverse-intensity weighted GEE fit:

summary(iiwgee$geefit)

## 

## Call:

## geeglm(formula = formulagee, family = family, data = data, weights = useweight, 

##     id = id, corstr = "independence")

## 

##  Coefficients:

##              Estimate   Std.err    Wald Pr(>|W|)    

## (Intercept)  0.761145  0.067807 126.006  < 2e-16 ***

## time        -0.028008  0.003649  58.921 1.64e-14 ***

## Group       -0.127790  0.060661   4.438   0.0352 *  

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Estimated Scale Parameters:

##             Estimate Std.err

## (Intercept)   0.7261  0.1339

## 

## Correlation: Structure = independenceNumber of clusters:   85   Maximum cluster size: 31

from which we see that the size of the largest tumour was significantly smaller among patients in the thiotepa
group as compared to placebo. One can also see the fitted visit intensity model:

summary(iiwgee$phfit)

## Call:

## coxph(formula = formulaph, data = datacox)

## 

##   n= 752, number of events= 752 

##    (85 observations deleted due to missingness)
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## 

##                                    coef exp(coef) se(coef) robust se     z

## Group                            0.8715    2.3904   0.0809    0.1574  5.54

## as.numeric(value.lag > 1)        0.0269    1.0273   0.1396    0.0903  0.30

## Group:as.numeric(value.lag > 1) -0.9490    0.3871   0.2254    0.3072 -3.09

##                                 Pr(>|z|)    

## Group                            3.1e-08 ***

## as.numeric(value.lag > 1)          0.766    

## Group:as.numeric(value.lag > 1)    0.002 ** 

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

##                                 exp(coef) exp(-coef) lower .95 upper .95

## Group                               2.390      0.418     1.756     3.254

## as.numeric(value.lag > 1)           1.027      0.973     0.861     1.226

## Group:as.numeric(value.lag > 1)     0.387      2.583     0.212     0.707

## 

## Concordance= 0.638  (se = 0.016 )

## Rsquare= 0.167   (max possible= 1 )

## Likelihood ratio test= 138  on 3 df,   p=0

## Wald test            = 32.9  on 3 df,   p=3.35e-07

## Score (logrank) test = 148  on 3 df,   p=0,   Robust = 13.9  p=0.00304

## 

##   (Note: the likelihood ratio and score tests assume independence of

##      observations within a cluster, the Wald and robust score tests do not).

In practice, it is usually helpful to focus first on choosing the visit intensity model, which can be done by fitting
proportional hazards models in the usual way. This may require lagged versions of some of the variables in the
dataset, which can be created through the function lagfn:

data(datalong)

datalong <- lagfn(datalong,c("time","value"),"id","time")

mph <- coxph(Surv(time.lag,time,event)~ Group*as.numeric(value.lag>1) + cluster(id),

 data=datalong[datalong$time>0,])

summary(mph)

One can then compute the inverse intensity weights:

datalong$weight <- iiw(mph,datalong,"id","time",TRUE)

head(datalong)

##   id basesize Group time value basenum size event time.lag value.lag

## 1  1        3     0    0     1       1    3     1       NA        NA

## 2  1        3     0    1     0       1    0     1        0         1

## 3  2        1     0    0     2       2    1     1       NA        NA

## 4  2        1     0    1     0       2    0     1        0         2

## 5  2        1     0    4     0       2    0     1        1         0

## 6  3        1     0    0     1       1    1     1       NA        NA

##   weight

## 1  1.000

## 2  1.584

## 3  1.000

## 4  1.542

## 5  1.584

## 6  1.000

Note that time.lag and value.lag were added as columns to datalong when lagfn was called. If you wish to
preserve the data in its original format, you can use iiw.weights to fit the visit intensity model and compute the
weights:

data(datalong)

head(datalong)

##   id basesize Group time value basenum size event

## 1  1        3     0    0     1       1    3     1

## 2  1        3     0    1     0       1    0     1

## 3  2        1     0    0     2       2    1     1

## 4  2        1     0    1     0       2    0     1

## 5  2        1     0    4     0       2    0     1

## 6  3        1     0    0     1       1    1     1



weights <- iiw.weights(Surv(time.lag,time,event)~ Group*as.numeric(value.lag>1) + cluster(id),

 formulanull=NULL,data=datalong,id="id",time="time",event="event",lagvars=c("time","value"),

 invariant=c("basesize","Group","basenum"),maxfu=NULL,first=TRUE,frailty=FALSE)

# summary(weights$m)

datalong$weight <- weights$iiw.weight

head(datalong)

##   id basesize Group time value basenum size event weight

## 1  1        3     0    0     1       1    3     1  1.000

## 2  1        3     0    1     0       1    0     1  1.584

## 3  2        1     0    0     2       2    1     1  1.000

## 4  2        1     0    1     0       2    0     1  1.542

## 5  2        1     0    4     0       2    0     1  1.584

## 6  3        1     0    0     1       1    1     1  1.000

Multiple Outputation

Once the inverse-intensity weights have been calculated, an alternative use for them is to perform multiple
outputation. The code below computes 5 outptted datasets, analyses each using an unweighted GEE, then
combines the results.

data(datalong)

weights <- iiw.weights(Surv(time.lag,time,event)~ Group*as.numeric(value.lag>1) + cluster(id),

 Surv(time.lag,time,event)~ Group,data=datalong,id="id",time="time",event="event",

 lagvars=c("time","value"),invariant=c("basesize","Group","basenum"),

 maxfu=NULL,first=TRUE,frailty=FALSE)

reg <- function(data){

    return(data.matrix(summary(geeglm(size~time + Group, id=id,data=data))$coefficients[,1:2]))

}

mo(5,reg,datalong,weights$iiw.weight,singleobs=FALSE,id="id",time="time",keep.first=TRUE)

## , , 1

## 

##       [,1]     [,2]    [,3]

## [1,] 1.263 -0.04910 -0.3094

## [2,] 1.193 -0.04707 -0.2567

## [3,] 1.166 -0.04705 -0.2316

## [4,] 1.183 -0.04490 -0.3106

## [5,] 1.179 -0.04581 -0.2677

## 

## , , 2

## 

##         [,1]     [,2]    [,3]

## [1,] 0.11566 0.005748 0.09629

## [2,] 0.10880 0.004996 0.09102

## [3,] 0.10298 0.005074 0.08318

## [4,] 0.09837 0.004608 0.09083

## [5,] 0.11061 0.005491 0.09668

## $est

## [1]  1.19659 -0.04679 -0.27520

## 

## $se

## [1] 0.32575 0.07198 0.30109

## 

## $RE.MO

## [1] 1.003 1.000 1.003

The first set of outputs are the GEE regression coefficients for the intercept, time, and Group for each of the 5
outputted datasets, together with their standard errors. The multiple outputation estimate of the regression
coefficients is given by $est, and is the mean across outputations of the GEE estimates. The multiple
outputation standard error ($se) is a function of both the within outputation standard errors and the between
outputation variance. The relative efficiency of using 5 outputations in place of all possible outputations is given
by RE.MO.

Multiple outputation is helpful for analyses where weighting is difficult to implement. One such example is a
semi-parametric joint model. Semi-parametric joint models are useful when there are latent variables that
influence both the outcome and visit processes. We consider the Liang (Liang, Lu, and Ying 2009) semi-
parametric joint model:

(t) = (t) + (t)β+ (t) + (t)Yi β0 Xi Wi νi1 ϵi

(t) = (t)exp( γ)λi i2λ0 Ui



where  is a subset of the covariates ,  is a vector of baseline covariates,  is a mean-zero
random error, and ,  are (potentially correlated) random effects.

The Liang model requires that the covariates in the model for the visits be time invariant. In practice,

for an observed vector of time-dependent auxiliary covariates  may be more reasonable. Multiple
outputation makes inference under this model possible by creating outputted datasets in which the visit process
does not depend on the observed covariates . These datasets can be analysed using Liang’s method for
the special case where there are no covariates in the visit process model.

Example

We consider the same regression model as before, regressing size onto group and adjusting for time, but this
time with a random intercept and a random effect for time. The marginal visit process is the same as before, but
we allow the visit and outcome processes to be correlated through random effects as well as through the
auxiliary covariates. That is, we take

with visit process model given by

where  and  are potentially correlated. Note that when calculating the weights used for
outputation, the frailty=TRUE option should be used.

Liangmo <- function(data,Yname,Xnames,Wnames,maxfu,baseline){

 x <- Liang(data,Yname,Xnames,Wnames,id="id",time="time",maxfu,baseline); print(x); return(x)

}

weights <- 

 iiw.weights(Surv(time.lag,time,event)~ Group*as.numeric(value.lag>1) + cluster(id),

   Surv(time.lag,time,event)~ Group + cluster(id),data=datalong,id="id",

   time="time",event="event",lagvars=c("time","value"),invariant=c("basesize","Group","basenum"),

   maxfu=NULL,first=TRUE,frailty=TRUE)

mo(20,Liangmo,datalong[is.finite(datalong$size),],weights$iiw.weight[is.finite(datalong$size)],

 singleobs=FALSE,id="id",time="time",keep.first=TRUE,var=FALSE,Yname="size",Xnames="Group",

 Wnames="time",maxfu=NULL,baseline=1)

## [1] -0.1749

## [1] -0.18

## [1] -0.1389

## [1] -0.1961

## [1] -0.1417

## [1] -0.1666

## [1] -0.131

## [1] -0.1778

## [1] -0.1584

## [1] -0.2142

## [1] -0.1372

## [1] -0.1687

## [1] -0.1844

## [1] -0.152

## [1] -0.175

## [1] -0.1301

## [1] -0.1448

## [1] -0.1353

## [1] -0.1194

## [1] -0.1582

## , , 1

## 

##          [,1]

##  [1,] -0.1749

##  [2,] -0.1800

##  [3,] -0.1389

##  [4,] -0.1961

##  [5,] -0.1417

##  [6,] -0.1666

##  [7,] -0.1310

##  [8,] -0.1778
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##  [9,] -0.1584

## [10,] -0.2142

## [11,] -0.1372

## [12,] -0.1687

## [13,] -0.1844

## [14,] -0.1520

## [15,] -0.1750

## [16,] -0.1301

## [17,] -0.1448

## [18,] -0.1353

## [19,] -0.1194

## [20,] -0.1582

## $est

## [1] -0.1592

The mean size of the largest tumour is smaller in the thiotepa group by 0.16cm compared to the placebo group.
Note that the Liang method does not provide theoretical standard errors, so these are usually estimated
through bootstrapping.
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