
xts: Extensible Time Series

Jeffrey A. Ryan Joshua M. Ulrich

May 18, 2008

Contents

1 Introduction 1

2 The structure of xts 4
2.1 It’s a zoo in here . 4
2.2 xts modifications . 4

3 Using the xts package 6
3.1 Creating data objects: as.xts and xts 6
3.2 xts methods . 7
3.3 Restoring the original class - reclass & Reclass 11
3.4 Additional time-based tools . 13

4 Developing with xts 17
4.1 One function for all classes: try.xts 17
4.2 Returning the original class: reclass 18

5 Customizing and Extending xts 20
5.1 xtsAttributes . 20
5.2 Subclassing xts . 21

6 Conclusion 21

1 Introduction

The statistical language R [6] offers the time-series analyst a variety of mech-
anisms to both store and manage time-indexed data. Native R classes poten-
tially suitable for time-series data include data.frame, matrix, vector, and
ts objects. Additional time-series tools have been subsequently introduced in
contributed packages to handle some of the domain-specific shortcomings of the
native R classes. These include irts from the tseries package[2], timeSeries
from the Rmetrics bundle[3], and its [4] and zoo [1] from their respective pack-
ages. Each of these contributed classes provides unique solution to many of the
issues related to working with time-series in R.

1

While it seems a bit paradoxical with all the current options available, what
R really needed was one more time-series class. Why? Users of R have had many
choices over the years for managing time-series data. This variety has meant
that developers have had to pick and choose the classes they would support, or
impose the necessary conversions upon the end-user. With the sheer magnitude
of software packages available from CRAN, it has become a challenge for users
and developers to select a time-series class that will manage the needs of the
individual user, as well as remain compatible with the broadest audience.

What may be sufficient for one use — say a quick correlation matrix may
be too limiting when more information needs to be incorporated in a complex
calculation. This is especially true for functions that rely on time-based indexes
to be manipulated or checked.

The previous solution to managing different data needs often involved a
series of as calls, to coerce objects from one type to another. While this may
be sufficient for many cases, it is less flexible than allowing the users to simply
use the object they are accustomed to, or quite possibly require. Additionally,
all current coercion methods fail to maintain the original object’s data in its
entirety. Converting from a timeSeries class to zoo would cause attributes
such as FinCenter, format, and recordIDs to be lost. Converting back to a
timeSeries would then add new values different than the original. For many
calculations that do not modify the data, this is most likely an acceptable side
effect. For functions that convert data — such as xts’s to.period — it limits
the value of the function, as the returned object is missing much of what may
have been a factor in the original class consideration.

One of the most important additions the new xts class makes to the R user’s
workflow doesn’t use xts at all, at least not explicitly. By converting data to xts
inside a function, the function developer is guaranteed to have to only manage
a single class of objects. It becomes unecessary to write specific methods to
handle different data. While many functions do have methods to accommodate
different classes, most do not. Before xts, the chartSeries function in the
quantmod package[7] was only able to handle zoo objects well. Work had been
done to allow for timeSeries objects to be used as well, but many issues were
still being worked out. With xts now used internally, it is possible to use any of
R’s time-series classes. Simultaneously saving development time and reducing
the learning/using curve for the end user. The function now simply handles
whatever time-series object it receives exactly as the user expects — without
complaint. More details, as well as examples of incorporating xts into functions
will be covered later in this document.

While it may seem that xts is primarily a tool to help make existing R code
more user-friendly, the opportunity to add exciting (to software people) new
functionality could not be passed up. To this end, xts offers the user the ability
to add custom attributes to any object — during its construction or at any
time thereafter. Additionally, by requiring that the index attribute be derived
from one of R’s existing time-based classes, xts methods can make assumptions,
while subsetting by time or date, that allow for much cleaner and accurate data
manipulation.

2

The remainder of this introduction will examine what an xts object consists
of and its basic usage, explain how developing with xts can save package devel-
opment time, and finally will demonstrate how to extend the class - informally
and formally.

3

2 The structure of xts

To understand a bit more of what an xts object can do, it may be beneficial to
know what an xts object is. This section is intended to provide a quick overview
of the basics of the class, as well as what features make it unique.

2.1 It’s a zoo in here

At the core of an xts object is a zoo object from the package of the same
name. Simplified, this class contains an array of values comprising your data
(often in matrix form) and an index attribute to provide information about the
data’s ordering. Most of the details surrounding zoo objects apply equally to
xts. As it would be redundent to simply retell the excellent introductory zoo
vignette, the reader is advised to read, absorb, and re-read that documentation
to best understand the power of this class. The authors of the xts package
recognize that zoo’s strength comes from its simplicity of use, as well as its
overall flexibility. What motivated the xts extension was a desire to have even
more flexibility, while imposing reasonable constraints to make this class into a
true time-based one.

2.2 xts modifications

Objects of class xts differ from objects of class zoo in three key ways: the use
of formal time-based classes for indexing, internal xts properties, and perhaps
most uniquely — user-added attributes.

True time-based indexes

To allow for functions that make use of xts objects as a general time-series
object - it was necessary to impose a simple rule on the class. The index of each
xts object must be of a known and supported time or date class. At present
this includes any one of the following - Date, POSIXct, chron, yearmon, yearqtr,
or timeDate. The relative merits of each are left to the judgement of the user,
though the first three are expected to be sufficient for most applications.

Internal attributes: .CLASS, .ROWNAMES, etc.

In order for one major feature of the xts class to be possible - the conversion and
re-conversion of classes to and from xts - certain elements must be preserved
within the converted object. These are for internal use, and as such require
little further explanation in an introductory document. Interested readers are
invited to examine the source as well as read the developer documentation.

xtsAttributes

This is what makes the xts class an extensible time-series class. Arbitrary at-
tributes may be assigned and removed from the object without causing issues

4

with the data’s display or otherwise. Additionally this is where other class spe-
cific attributes (e.g. FinCenter from timeSeries) are stored during conversion
to an xts object so they may be restored with reclass.

5

3 Using the xts package

Just what is required to start using xts? Nothing more than a simple conversion
of your current time-series data with as.xts, or the creation of a new object
with the xts constructor.

3.1 Creating data objects: as.xts and xts

There are two equally valid mechanisms to create an xts object - coerce a
supported time-series class to xts with a call to as.xts or create a new object
from scratch with xts.

Converting your existing time-series data: as.xts

If you are already comfortable using a particular time-series class in R, you can
still access the functionality of xts by converting your current objects.

Presently it is possible to convert all the major time-series like classes in R to
xts. This list includes objects of class: matrix, data.frame, ts, zoo, irts, its, and
timeSeries. The new object will maintain all the necessary information needed to
reclass this object back to its original class if that is desired. Most classes after
re-conversion will be identical to similar modifications on the original object,
even after sub-setting or other changes while an xts object.

> require(xts)

> data(sample_matrix)

> class(sample_matrix)

[1] "matrix"

> str(sample_matrix)

num [1:180, 1:4] 50 50.2 50.4 50.4 50.2 ...
- attr(*, "dimnames")=List of 2
..$: chr [1:180] "2007-01-02" "2007-01-03" "2007-01-04" "2007-01-05" ...
..$: chr [1:4] "Open" "High" "Low" "Close"

> matrix_xts <- as.xts(sample_matrix, dateFormat = "Date")

> str(matrix_xts)

An 'xts' object from 2007-01-02 to 2007-06-30 containing:
Data: num [1:180, 1:4] 50 50.2 50.4 50.4 50.2 ...
- attr(*, "dimnames")=List of 2
..$: NULL
..$: chr [1:4] "Open" "High" "Low" "Close"
Indexed by objects of class: [Date]
Original class: 'matrix'
xts Attributes:
NULL

6

> df_xts <- as.xts(as.data.frame(sample_matrix), important = "very important info!")

> str(df_xts)

An 'xts' object from 2007-01-02 to 2007-06-30 containing:
Data: num [1:180, 1:4] 50 50.2 50.4 50.4 50.2 ...
- attr(*, "dimnames")=List of 2
..$: NULL
..$: chr [1:4] "Open" "High" "Low" "Close"
Indexed by objects of class: [POSIXt,POSIXct]
Original class: 'data.frame'
xts Attributes:

List of 1
$ important: chr "very important info!"

A few comments about the above. as.xts takes different arguments, de-
pending on the original object to be converted. Some classes do not contain
enough information to infer a time-date class. If that is the case, POSIXct is
used by default. This is the case with both matrix and data.frame objects. In
the preceding examples we first requested that the new date format be of type
’Date’. The second example was left to the default xts method with a custom
attribute added.

Creating new data: the xts constructor

Data objects can also be constructed directly from raw data with the xts con-
structor function, in essentially the same way a zoo object is created with the
exception that at present there is no equivelant zooreg class.

> xts(1:10, Sys.Date() + 1:10)

[,1]
2008-12-31 1
2009-01-01 2
2009-01-02 3
2009-01-03 4
2009-01-04 5
2009-01-05 6
2009-01-06 7
2009-01-07 8
2009-01-08 9
2009-01-09 10

3.2 xts methods

There is a full complement of standard methods to make use of the features
present in xts objects. The generic methods currently extended to xts include

7

“[”, cbind, rbind, c, str, Ops, print, na.omit, time, index, plot and core-
data. In addition, most methods that can accept zoo or matrix objects will
simply work as expected.

A quick tour of some of the methods leveraged by xts will be presented
here, including subsetting via “[”, indexing objects with indexClass and con-
vertIndex, and a quick look at plotting xts objects with the plot function.

Subsetting

The most noticable difference in the behavior of xts objects will be apparent in
the use of the “[” operator. Using special notation, one can use date-like strings
to extract data based on the time-index. Using increasing levels of time-detail,
it is possible to subset the object by year, week, days - or even seconds.

The i (row) argument to the subset operator “[”, in addition to accepting
numeric values for indexing, can also be a character string, a time-based object,
or a vector of either. The format must left-specified with respect to the standard
ISO:8601 time format —“CCYY-MM-DD HH:MM:SS” [5]. This means that for
one to extract a particular month, it is necesssary to fully specify the year as
well. To identify a particular hour, say all observations in the eighth hour on
January 1, 2007, one would likewise need to include the full year, month and
day - e.g. “2007-01-01 08”.

It is also possible to explicitly request a range of times via this index-based
subsetting, using a double colon “::” or the ISO-recommended “/” as the range
seperater. The basic form is “from::to” or “from/to”, where both from and to
are optional. If either side is missing, it is interpretted as a request to retrieve
data from the beginning, or through the end of the data object.

Another benefit to this method is that exact starting and ending times need
not match the underlying data - the nearest available observation will be re-
turned that is within the requested time period.

The following example shows how to extract the entire month of March
2007 - without having to manually identify the index positions or match the
underlying index type. The results have been abbreviated to save space.

> matrix_xts["2007-03"]

Open High Low Close
2007-03-01 50.81620 50.81620 50.56451 50.57075
2007-03-02 50.60980 50.72061 50.50808 50.61559
2007-03-03 50.73241 50.73241 50.40929 50.41033
2007-03-04 50.39273 50.40881 50.24922 50.32636
2007-03-05 50.26501 50.34050 50.26501 50.29567

...

Now extract all the data from the beginning through January 7, 2007.

> matrix_xts['::2007-01-07'] # or matrix_xts['/2007-01-07']

8

Open High Low Close
2007-01-02 50.03978 50.11778 49.95041 50.11778
2007-01-03 50.23050 50.42188 50.23050 50.39767
2007-01-04 50.42096 50.42096 50.26414 50.33236
2007-01-05 50.37347 50.37347 50.22103 50.33459
2007-01-06 50.24433 50.24433 50.11121 50.18112
2007-01-07 50.13211 50.21561 49.99185 49.99185

Additional xts tools providing subsetting are the first and last functions. In
the spirit of head and tail from the utils recommended package, they allow for
string based subsetting, without forcing the user to conform to the specifics of
the time index, similar in usage to the by arguments of aggregate.zoo and
seq.POSIXt.

Here is the first 1 week of the data

> first(matrix_xts, "1 week")

Open High Low Close
2007-01-02 50.03978 50.11778 49.95041 50.11778
2007-01-03 50.23050 50.42188 50.23050 50.39767
2007-01-04 50.42096 50.42096 50.26414 50.33236
2007-01-05 50.37347 50.37347 50.22103 50.33459
2007-01-06 50.24433 50.24433 50.11121 50.18112
2007-01-07 50.13211 50.21561 49.99185 49.99185

...and here is the first 3 days of the last week of the data.

> first(last(matrix_xts, "1 week"), "3 days")

Open High Low Close
2007-06-25 47.20471 47.42772 47.13405 47.42772
2007-06-26 47.44300 47.61611 47.44300 47.61611
2007-06-27 47.62323 47.71673 47.60015 47.62769

Indexing

While the subsetting ability of the above makes exactly which time-based class
you choose for your index a bit less relevant, it is none-the-less a factor that is
beneficial to have control over.

To that end, xts provides facilities for indexing based on any of the current
time-based classes. These include Date, POSIXct, chron, yearmon, yearqtr,
and timeDate. The index itself may be accessed via the zoo generics extended
to xts — index and the replacement function index<-.

It is also possible to directly query and set the index class of an xts object
by using the respective functions indexClass and indexClass<-. Temporary
conversion, resulting in a new object with the requested index class, can be
accomplished via the convertIndex function.

9

> indexClass(matrix_xts)

[1] "Date"

> indexClass(convertIndex(matrix_xts, "POSIXct"))

[1] "POSIXct"

10

Plotting

The use of time-based indexes within xts allows for assumptions to be made
regarding the x-axis of plots. The plot method makes use of the xts function
axTicksByTime, which heuristically identifies suitable tickmark locations for
printing given a time-based object.

When axTickByTime is called with its ticks.on argument set to “auto”, the
result is a vector of suitably chosen tickmark locations. One can also specify the
specific points to use by passing a character string to the argument indicating
which time period to create tickmarks on.

> axTicksByTime(matrix_xts, ticks.on = "months")

Jan 02\n2007 Feb 01\n2007 Mar 01\n2007 Apr 01\n2007 May 01\n2007 Jun 01\n2007
1 31 59 90 120 151

Jun 30\n2007
180

A simple example of the plotting functionality offered by this labelling can be
seen here:

> plot(matrix_xts[, 1], major.ticks = "months", minor.ticks = FALSE,

+ main = NULL, col = 3)

Jan 02
2007

Feb 01
2007

Mar 01
2007

Apr 01
2007

May 01
2007

Jun 01
2007

Jun 30
2007

48
49

50
51

3.3 Restoring the original class - reclass & Reclass

By now you may be interested in some of the xts functionality presented, and
wondering how to incorporate it into a current workflow — but not yet ready
to commit to using it exclusively.

If it is desirable to only use the subsetting tools for instance, a quick con-
version to xts via as.xts will allow full access to the above subsetting tools.
When it is then necessary to continue your analysis using the original class, it
is as simple as calling the function reclass to return the object to its original
class.

11

(Re)converting classes manually: reclass

> # using xts-style subsetting doesn't work on non-xts objects

> sample_matrix['2007-06']

[1] NA

> # convert to xts to use time-based subsetting

> str(as.xts(sample_matrix)['2007-06'])

An 'xts' object from 2007-06-01 to 2007-06-30 containing:
Data: num [1:30, 1:4] 47.7 47.6 47.7 47.5 47.4 ...
- attr(*, "dimnames")=List of 2
..$: NULL
..$: chr [1:4] "Open" "High" "Low" "Close"
Indexed by objects of class: [POSIXt,POSIXct]
Original class: 'matrix'
xts Attributes:
NULL

> # reclass to get to original class back

> str(reclass(as.xts(sample_matrix)['2007-06']))

num [1:30, 1:4] 47.7 47.6 47.7 47.5 47.4 ...
- attr(*, "dimnames")=List of 2
..$: chr [1:30] "2007-06-01" "2007-06-02" "2007-06-03" "2007-06-04" ...
..$: chr [1:4] "Open" "High" "Low" "Close"

This differs dramatically from the standard as.***** conversion though.
Internally, key attributes of your original data object are preserved and adjusted
to assure that the process introduces no changes other than those requested.
Think of it as a smart as.

Behind the scenes, reclass has enormous value in functions that convert all
incoming data to xts for simplified processing. Often it is necessary to return
an object back to the user in the class he is expecting — following the principal
of least surprise. It is in these circumstances where reclass can turn hours
of tedious development into mere minutes per function. More details on the
details of using this functionality for developers will be covered in section 4,
Developing with xts.

A user friendly interface of this reclass functionality, though implicit, is
available in the Reclass function. It’s purpose is to make it easy to preserve an
object’s attributes after calling a function that is not programmed to be aware
of your particular class.

12

Letting xts handle the details: Reclass

If the function you require does not make use of reclass internally, it may still
be possible to let xts convert and reconvert your time-based object for you. The
caveat here is that the object returned:

� must be of the same length as the first argument to the function.

� intended to be coerced back to the class of the first argument

Simply wrapping the function that meets these criteria in Reclass will result
in an attempt to coerce the returned output of the function

> z <- zoo(1:10,Sys.Date()+1:10)

> # filter converts to a ts object - and loses the zoo class

> (zf <- filter(z, 0.2))

Time Series:
Start = 14244
End = 14253
Frequency = 1
[1] 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

> class(zf)

[1] "ts"

> # using Reclass, the zoo class is preserved

> (zf <- Reclass(filter(z, 0.2)))

2008-12-31 2009-01-01 2009-01-02 2009-01-03 2009-01-04 2009-01-05 2009-01-06
0.2 0.4 0.6 0.8 1.0 1.2 1.4

2009-01-07 2009-01-08 2009-01-09
1.6 1.8 2.0

> class(zf)

[1] "zoo"

The Reclass function is still a bit experimental, and will certainly improve
in time, but for now provides at least an alternative option to maintain your
object’s class and attributes when the function you require can’t on its own.

3.4 Additional time-based tools

In addition to the core xts tools covered above, there are more functions that
are included in xts to make the process of dealing with time-series data easier.
Some of these have been moved from the package quantmod to xts to make it
easier to use them within other applications.

13

Calculate periodicity

The periodicity function provides a quick summary as to the underlying pe-
riodicity of most time-series like objects. Primarily a wrapper to difftime it
provides a quick and concise summary of your data.

> periodicity(matrix_xts)

Daily periodicity from 2007-01-02 to 2007-06-30

Find endpoints by time

Another common issue with time-series data is identifying the endpoints with
respect to time. Often it is necessary to break data into hourly or monthly
intervals to calculate some statistic. A simple call to endpoints offers a quick
vector of values suitable for subsetting a dataset by. Note that the first element
it zero, which is used to delineate the end.

> endpoints(matrix_xts, on = "months")

[1] 0 30 58 89 119 150 180

> endpoints(matrix_xts, on = "weeks")

[1] 0 6 13 20 27 34 41 48 55 62 69 76 83 90 97 104 111 118 125
[20] 132 139 146 153 160 167 174 180

Change periodicity

One of the most ubiquitous type of data in finance is OHLC data (Open-High-
Low-Close). Often is is necessary to change the periodicity of this data to
something coarser - e.g. take daily data and aggregate to weekly or monthly.
With to.period and related wrapper functions it is a simple proposition.

> to.period(matrix_xts, "months")

matrix_xts.Open matrix_xts.High matrix_xts.Low matrix_xts.Close
2007-01-31 50.03978 50.77336 49.76308 50.22578
2007-02-28 50.22448 51.32342 50.19101 50.77091
2007-03-31 50.81620 50.81620 48.23648 48.97490
2007-04-30 48.94407 50.33781 48.80962 49.33974
2007-05-31 49.34572 49.69097 47.51796 47.73780
2007-06-30 47.74432 47.94127 47.09144 47.76719

> periodicity(to.period(matrix_xts, "months"))

Monthly periodicity from 2007-01-31 to 2007-06-30

> to.monthly(matrix_xts)

14

matrix_xts.Open matrix_xts.High matrix_xts.Low matrix_xts.Close
Jan 2007 50.03978 50.77336 49.76308 50.22578
Feb 2007 50.22448 51.32342 50.19101 50.77091
Mar 2007 50.81620 50.81620 48.23648 48.97490
Apr 2007 48.94407 50.33781 48.80962 49.33974
May 2007 49.34572 49.69097 47.51796 47.73780
Jun 2007 47.74432 47.94127 47.09144 47.76719

The to.monthly wrapper automatically requests that the returned object have
an index/rownames using the yearmon class. With the indexAt argument it is
possible to align most series returned to the end of the period, the beginning of
the period, or the first or last observation of the period — even converting to
something like yearmon is supported. The online documentation provides more
details as to additional arguments.

Periodically apply a function

Often it is desirable to be able to calculate a particular statistic, or evaluate a
function, over a set of non-overlapping time periods. With the period.apply
family of functions it is quite simple.

The following examples illustrate a simple application of the max function to
our example data.

> # the general function, internally calls sapply

> period.apply(matrix_xts[,4],INDEX=endpoints(matrix_xts),FUN=max)

[,1]
2007-01-31 50.67835
2007-02-28 51.17899
2007-03-31 50.61559
2007-04-30 50.32556
2007-05-31 49.58677
2007-06-30 47.76719

> # same result as above, just a monthly interface

> apply.monthly(matrix_xts[,4],FUN=max)

[,1]
2007-01-31 50.67835
2007-02-28 51.17899
2007-03-31 50.61559
2007-04-30 50.32556
2007-05-31 49.58677
2007-06-30 47.76719

> # using one of the optimized functions - about 4x faster

> period.max(matrix_xts[,4], endpoints(matrix_xts))

15

[,1]
2007-01-31 50.67835
2007-02-28 51.17899
2007-03-31 50.61559
2007-04-30 50.32556
2007-05-31 49.58677
2007-06-30 47.76719

In addition to apply.monthly, there are wrappers to other common time
frames including: apply.daily, apply.weekly, apply.quarterly, and ap-
ply.yearly. Current optimized functions include period.max, period.min,
period.sum, and period.prod.

16

4 Developing with xts

While the tools available to the xts user are quite useful, possibly greater util-
ity comes from using xts internally as a developer. Bypassing traditional S3/S4
method dispatch and custom if-else constructs to handle different time-based
classes, xts not only makes it easy to handle all supported classes in one con-
sistent manner, it also allows the whole process to be invisible to the function
user.

4.1 One function for all classes: try.xts

With the proliferation of data classes in R, it can be tedious, if not entirely
impractical, to manage interfaces to all classes.

Not only does trying to handle every possible class present non-trivial design
issues, the developer is also forced to learn and understand the nuances of up to
eight or more classes. For each of these classes it is then ncessary to write and
manage corresponding methods for each case.

At best, this reduces the time available to devote to core function function-
ality — at worst is a prime opportunity to introduce errors that inevitibly come
from this massive increase in code.

The solution to this issue is to use one class internally within your package,
or more generally your entire workflow. This can be accomplished in one of two
ways: force your users to adopt the convention you do, or allow for multiple
object classes by relying on internal code to convert to one consistent type.

Using the second approach offers the most end-user flexibility, as class con-
versions are no longer required simply to make use of package functionality. The
user’s own workflow need not be interrupted with unproductive and potentially
error-prone conversions and reconversions.

Using the functionality of try.xts and reclass offered by the xts package
allows the developer an opportunity to cleanly, and reliably, manage data with
the least amount of code, and the least number of artificial end-user restrictions.

An example from the xts package illustrates just how simple this can be.

> period.apply

function (x, INDEX, FUN, ...)
{

x <- try.xts(x, error = FALSE)
FUN <- match.fun(FUN)
xx <- sapply(1:(length(INDEX) - 1), function(y) {

FUN(x[(INDEX[y] + 1):INDEX[y + 1]], ...)
})
reclass(xx, x[INDEX])

}
<environment: namespace:xts>

17

Some explanation of the above code is needed. The try.xts function takes
three arguments, the first is the object that the developer is trying to convert,
the second . . . is any additional arguments to the as.xts constructor that is
called internally (ignore this for the most part — though it should be noted
that this is an R dots argument . . .), and the third is a what the result of an
error should be.

Of the three, error is probably the most useful from a design standpoint.
Some functions may not be able to deal with data that isn’t time-based. Simple
numerical vectors might not contain enough information to be of any use. The
error argument lets the developer decide if the function should be halted at
this point, or continue onward. If a logical value, the result is handled by
R’s standard error mechanism during the try-catch block of code internal to
try.xts. If error is a character string, it is returned to the standard output
as the message. This allows for diagnostic messages to be fine tuned to your
particular application.

The result of this call, if successful (or if error=FALSE) is an object that may
be of class xts. If your function can handle either numeric data or time-based
input, you can branch code here for cases you expect. If your code has been
written to be more general at this point, you can simply continue with your
calculations, the originally converted object will contain the information that
will be required to reclass it at the end.

A note of importance here: if you are planning on returning an object that is
of the original class, it is important to not modify the originally coverted object
- in this case that would be the x result of the try.xts call. You will notice that
the function’s result is assigned to xx so as not to impact the original converted
function. If this is not possible, it is recommended to copy the object first to
preserve an untouched copy for use in the reclass function.

Which leads to the second part of the process of developing with xts.

4.2 Returning the original class: reclass

The reclass function takes the object you are expecting to return to your user
(the result of all your calculations) and optionally an xts object that was the
result of the original try.xts call.

It is important to stress that the match.to object must be an untouched
object returned from the try.xts call. The only exception here is when the
resultant data has changed dimension — as is the case in the period.apply
example. As reclass will try and convert the first argument to the orginal class
of the second (the original class passed to the function), it must have the same
general row dimension of the original.

A final note on using reclass. If the match.to argument is left off, the
conversion will only be attempted if the object is of class xts and has a CLASS
attribute that is not NULL, else the object is simply returned. Essentially if the
object meant to be reconverted is already of in the form needed by the individual
reclass methods, generally nothing more needs to be done by the developer.

18

In many cases your function does not need to return an object that is ex-
pected to be used in the same context as the original. This would be the case
for functions that summarize an object, or perform some statistical analysis.

For functions that do not need the reclass functionality, a simple use of
try.xts at the beginning of the function is all that is needed to make use of
this single-interface tool within xts.

Further examples can be found in the xts functions periodicity and end-
points (no use of reclass), and to.period (returns an object of the original’s
class). The package quantmod also utilizes the try.xts functionality in its
chartSeries function — allowing financial charts for all time-based classes.

Forthcoming developer documentation will examine the functions highlighted
above, as well go into more detail on exceptional cases and requirements.

19

5 Customizing and Extending xts

As extensible is in the name of the package, it is only logical that it can be
extended. The two obvious mechanisms to make xts match the individual
needs of a diverse user base is the introduction of custom attributes, and the
idea of subclassing the entire xts class.

5.1 xtsAttributes

What makes an R attribute an xtsAttribute? Beyond the sematics, xtsAt-
tributes are designed to persist once attached to an object, as well as not get
in the way of other object functionality. All xtsAttributes are indeed R at-
tributes, though the same can not be said of the reverse — all R attributes are
not xtsAttributes!

Attaching arbitrary attributes to most (all?) classes other than xts will
cause the attribute to be displayed during most calls that print the object. While
this isn’t necessarily devestating, it is often time unsightly, and sometimes even
confusing to the end user (this may depend on the quality your users).

xts offers the developer and end-user the opportunity to attach attributes
with a few different mechanisms - and all will be suppressed from normal view,
unless specifically called upon.

What makes an xtsAttribute special is that it is principally a mechanism to
store and view meta-data, that is, attributes that would be seen with a call to
R’s attributes.

> str(attributes(matrix_xts))

List of 6
$ dim : int [1:2] 180 4
$ dimnames :List of 2
..$: NULL
..$: chr [1:4] "Open" "High" "Low" "Close"
$ index : num [1:180] 1.17e+09 1.17e+09 1.17e+09 1.17e+09 1.17e+09 ...
$.indexCLASS: chr "Date"
$.CLASS : chr "matrix"
$ class : chr [1:2] "xts" "zoo"

> str(xtsAttributes(matrix_xts))

NULL

> xtsAttributes(matrix_xts) <- list(myattr = "my meta comment")

> attr(matrix_xts, "another.item") <- "one more thing..."

> str(attributes(matrix_xts))

List of 8
$ dim : int [1:2] 180 4

20

$ dimnames :List of 2
..$: NULL
..$: chr [1:4] "Open" "High" "Low" "Close"
$ index : num [1:180] 1.17e+09 1.17e+09 1.17e+09 1.17e+09 1.17e+09 ...
$.indexCLASS : chr "Date"
$.CLASS : chr "matrix"
$ class : chr [1:2] "xts" "zoo"
$ myattr : chr "my meta comment"
$ another.item: chr "one more thing..."

> str(xtsAttributes(matrix_xts))

List of 2
$ myattr : chr "my meta comment"
$ another.item: chr "one more thing..."

In general - the only attributes that should be handled directly by the user
(without the assistance of xts functions) are ones returned by xtsAttributes.
The additional attributes seen in the attributes example are for internal R
and xts use, and if you expect unbroken code, should be left alone.

5.2 Subclassing xts

Subclassing xts is as simple as extending any other S3 class in R. Simply include
the full class of the xts system in your new class.

> xtssubclass <- structure(matrix_xts, class = c("xts2", "xts",

+ "zoo"))

> class(xtssubclass)

[1] "xts2" "xts" "zoo"

This will allow the user to override methods of xts and zoo, while still allow-
ing for backward compatibility with all the tools of xts and zoo, much the way
xts benefits from extending zoo.

6 Conclusion

The xts package offers both R developers and R users an extensive set of time-
aware tools for use in time-based applications. By extending the zoo class,
xts leverages an excellent infrastructure tool into a true time-based class. This
simple requirement for time-based indexing allows for code to make assumptions
about the object’s purpose, and facilitates a great number of useful utilities —
such as time-based subsetting.

Additionally, by embedding knowledge of the currently used time-based
classes available in R, xts can offer the developer and end-user a single interface
mechanism to make internal class decisions user-driven. This affords developers

21

an opportunity to design applications for there intended purposes, while freeing
up time previously used to manage the data structures.

Future development of xts will focus on integrating xts into more exter-
nal packages, as well as additional useful additions to the time-based utilities
currently available within the package. An effort to provide external disk and
memory based data access will also be examined for potential inclusion or ex-
tension.

References

[1] Achim Zeileis and Gabor Grothendieck (2005): zoo: S3 Infrastructure for
Regular and Irregular Time Series. Journal of Statistical Software, 14(6),
1-27. URL http://www.jstatsoft.org/v14/i06/

[2] Adrian Trapletti and Kurt Hornik (2007): tseries: Time Series Analysis
and Computational Finance. R package version 0.10-11.

[3] Diethelm Wuertz, many others and see the SOURCE file (2007): Rmetrics:
Rmetrics - Financial Engineering and Computational Finance. R package
version 260.72. http://www.rmetrics.org

[4] Portfolio & Risk Advisory Group and Commerzbank Securities (2006): its:
Irregular Time Series. R package version 1.1.5.

[5] International Organization for Standardization (2004): ISO 8601: Data
elements and interchage formats — Information interchange — Represen-
tation of dates and time URL http://www.iso.org

[6] R Development Core Team: R: A Language and Environment for Statisti-
cal Computing, R Foundation for Statistical Computing, Vienna, Austria.
ISBN 3-900051-07-0, URL http://www.R-project.org

[7] Jeffrey A. Ryan (2008): quantmod: Quantitative Financial Modelling
Framework. R package version 0.3-5. URL http://www.quantmod.com
URL http://r-forge.r-project.org/projects/quantmod

22

	Introduction
	The structure of xts
	It's a zoo in here
	xts modifications

	Using the xts package
	Creating data objects: as.xts and xts
	xts methods
	Restoring the original class - reclass & Reclass
	Additional time-based tools

	Developing with xts
	One function for all classes: try.xts
	Returning the original class: reclass

	Customizing and Extending xts
	xtsAttributes
	Subclassing xts

	Conclusion

