
Tinytest by example

Mark van der Loo

August 23, 2019 | Package version 1.0.0

Contents

1 expect_equal 2

2 expect_equivalent 3

3 expect_identical 4

4 expect_null 5

5 expect_true, expect_false 6

6 expect_message 7

7 expect_warning 8

8 expect_error 9

9 expect_silent 10

10 ignore 11

Introduction

This document provides a number of real-life examples on how tinytest is used by other packages. The examples
aim to illustrate the purpose of testing functions and serve as a complement to the technical documentation
and the ‘using tinytest’ vignette. There is a section for each function. Each section starts with a short
example that demonstrates the core purpose of the function. Next, one or more examples from packages that
are published on CRAN are shown and explained.

Sometimes a few lines of code were modified or deleted for brevity. This is indicated with comment between
square brackets, e.g.

[this is an extra comment, only for this vignette]

This document is probably not interesting to read front-to-back. It is more aimed to browse once in a while
to get an idea on how tinytest can be used in practice.

Package authors are invited to contribute new use cases so new users can learn from them. Please contact the
author of this package either by email or via the github repository.

http://github.com/markvanderloo/tinytest

1 expect_equal

R objects are described by the data they contain and the attributes attached to them. For example, in the
vector c(x=1,y=2), the data consist of the numbers 1 and 2 (in that order) and there is a single attribute
called names, consisting of the two strings "x" and "y" (in that order).

The expect_equal function tests whether both the data and the attributes of two objects are the same.

R> expect_equal(1,1)

----- PASSED : <-->

call| expect_equal(1, 1)

R> expect_equal(1, c(x=1))

----- FAILED[data]: <-->

call| expect_equal(1, c(x = 1))

diff| Expected 1, got 1

Numbers do not have to be exactly the same to be equal (by default).

R> 0.9-0.7-0.2

[1] 5.551115e-17

R> expect_equal(0.9-0.7-0.2,0)

----- PASSED : <-->

call| expect_equal(0.9 - 0.7 - 0.2, 0)

R> expect_equal(0.9-0.7-0.2,0, tolerance=0)

----- FAILED[attr]: <-->

call| expect_equal(0.9 - 0.7 - 0.2, 0, tolerance = 0)

diff| Expected 5.55111512312578e-17, got 0

Here is an example from the stringdist package. This package implements various methods to determine how
different two strings are. In this test, we check one aspect of the ‘optimal string alignment’ algorithm. In
particular, we test if it correctly counts the switch of two adjacent characters as a single operation.

expect_equal(stringdist("ab", "ba", method="osa"), 1)

The benchr package is a package to time R code, and it uses expect_equal to extensively check the outputs.
Here are a few examples.

b <- benchr::benchmark(1 + 1, 2 + 2)

m <- mean(b)

expect_equal(class(m), c("summaryBenchmark", "data.frame"))

expect_equal(dim(m), c(2L, 7L))

expect_equal(names(m), c("expr", "n.eval", "mean", "trimmed", "lw.ci", "up.ci", "relative"))

expect_equal(class(m$expr), "factor")

expect_equal(levels(m$expr), c("1 + 1", "2 + 2"))

expect_true(all(sapply(m[-1], is.numeric)))

2 tinytest 1.0.0

2 expect_equivalent

This function ignores the attributes when comparing two R objects. Two objects are equivalent when their
data are the same.

R> expect_equivalent(1,1)

----- PASSED : <-->

call| expect_equivalent(1, 1)

R> expect_equivalent(1, c(x=1))

----- PASSED : <-->

call| expect_equivalent(1, c(x = 1))

The validate package offers functions to define restrictions on data, and then confront the data with them.
The function values extracts the boolean results in the form of a matrix with specific row- and column names.
In the example below we are only interested in testing whether the contents of the matrix is computed correctly.

v <- validator(x > 0)

d <- data.frame(x=c(1,-1,NA))

expect_equivalent(values(confront(d,v)), matrix(c(TRUE,FALSE,NA)))

The anytime package translates text data into data/time format (Date or POSIXct). Here, a test is performed
to equivalence, to ignore the timezone label that is attached by anytime but not by as.Date.

refD <- as.Date("2016-01-01")+0:2

expect_equivalent(refD, anydate(20160101L + 0:2))

3 tinytest 1.0.0

3 expect_identical

This is the most strict test for equality. The best way to think about this is that two objects must be
byte-by-byte indistinguishable in order to be identical. The differences can be subtle, as shown below.

R> La <- list(x=1);

R> Lb <- list(x=1)

R> expect_identical(La, Lb)

----- PASSED : <-->

call| expect_identical(La, Lb)

R> a <- new.env()

R> a$x <- 1

R> b <- new.env()

R> b$x <- 1

R> expect_identical(a,b)

----- FAILED[attr]: <-->

call| expect_identical(a, b)

diff| TRUE

Here, La and Lb are indistinguishable from R’s point of view. They only differ in their location in memory. The
environments a and b are distinguishable since they contain an explicit identifier which make them unique.

R> print(a)

<environment: 0x565332b7dd80>

R> print(b)

<environment: 0x565332b02260>

Another difference with expect_equal and expect_equivalent is that expect_identical does not allow
any tolerance for numerical differences.

The stringdistmatrix function of stringdist computes a matrix of string dissimilarity measures between all
elements of a character vector. Below, it is tested whether the argument useNames="none" and the legacy
(deprecated) argument useName=FALSE.

a <- c(k1 = "aap",k2="noot")

expect_identical(stringdistmatrix(a,useNames="none")

, stringdistmatrix(a,useNames=FALSE))

The wand package can retrieve MIME types for files and directories. This means there are many cases to test.
In this particular package this is done by creating two lists, one with input and one with expected results. The
tests are then performed as follows:

list(

[long list of results removed for brevity]

) -> results

fils <- list.files(system.file("extdat", package="wand"), full.names=TRUE)

tst <- lapply(fils, get_content_type)

names(tst) <- basename(fils)

for(n in names(tst)) expect_identical(results[[n]], tst[[n]])

4 tinytest 1.0.0

4 expect_null

The result of an operation should be NULL.

R> expect_null(iris$hihi)

----- PASSED : <-->

call| expect_null(iris$hihi)

R> expect_null(iris$Species)

----- FAILED[data]: <-->

call| expect_null(iris$Species)

diff| Expected NULL, got 'factor'

This function is new in version 0.9.7 and not used in any depending packages yet.

5 tinytest 1.0.0

5 expect_true, expect_false

The result of an operation should be precisely TRUE or FALSE.

R> expect_true(1 == 1)

----- PASSED : <-->

call| expect_true(1 == 1)

R> expect_false(1 == 2)

----- PASSED : <-->

call| expect_false(1 == 2)

The anytime package converts many types of strings to date/time objects (POSIXct or Date). Here is a part
of it’s tinytest test suite.

Datetime: factor and ordered (#44)

refD <- as.Date("2016-09-01")

expect_true(refD == anydate(as.factor("2016-09-01")))

expect_true(refD == anydate(as.ordered("2016-09-01")))

expect_true(refD == utcdate(as.factor("2016-09-01")))

expect_true(refD == utcdate(as.ordered("2016-09-01")))

Note that == used here has subtly different behavior from all.equal used by expect_equal. In the above
case, == does not compare time zone data, which is not added by as.Date but is added by anytime. This
means that for example

expect_equal(anydate(as.factor("2016-09-01")), refD)

would fail.

The ulid package uses expect_true to verify the type of a result.

x <- ULIDgenerate(20)

expect_true(is.character(x))

6 tinytest 1.0.0

6 expect_message

Expect that a message is emitted. Optionally you can specify a regular expression that the message must
match.

R> expect_message(message("hihi"))

----- PASSED : <-->

call| expect_message(message("hihi"))

R> expect_message(message("hihi"), pattern = "hi")

----- PASSED : <-->

call| expect_message(message("hihi"), pattern = "hi")

R> expect_message(message("hihi"), pattern= "ha")

----- FAILED[xcpt]: <-->

call| expect_message(message("hihi"), pattern = "ha")

diff| The message

diff| 'hihi'
diff| doen not match pattern 'ha'

R> expect_message(print("hihi"))

[1] "hihi"

----- PASSED : <-->

call| expect_message(print("hihi"))

7 tinytest 1.0.0

7 expect_warning

Expect that a warning is emitted. Optionally you can specify a regular expression that the warning must match.

R> expect_warning(warning("hihi"))

----- PASSED : <-->

call| expect_warning(warning("hihi"))

R> expect_warning(warning("hihi"), pattern = "hi")

----- PASSED : <-->

call| expect_warning(warning("hihi"), pattern = "hi")

R> expect_warning(warning("hihi"), pattern= "ha")

----- FAILED[xcpt]: <-->

call| expect_warning(warning("hihi"), pattern = "ha")

diff| The warning message

diff| 'hihi'
diff| does not match pattern 'ha'

R> expect_warning(1+1)

----- FAILED[xcpt]: <-->

call| expect_warning(1 + 1)

diff| No warning

8 tinytest 1.0.0

8 expect_error

Expect that an error is emitted. Optionally you can specify a regular expression that the error must match.

R> expect_error(stop("hihi"))

----- PASSED : <-->

call| expect_error(stop("hihi"))

R> expect_error(stop("hihi"), pattern = "hi")

----- PASSED : <-->

call| expect_error(stop("hihi"), pattern = "hi")

R> expect_error(stop("hihi"), pattern= "ha")

----- FAILED[xcpt]: <-->

call| expect_error(stop("hihi"), pattern = "ha")

diff| The error message:

diff| 'hihi'
diff| does not match pattern 'ha'

R> expect_error(print("hoho"))

[1] "hoho"

----- FAILED[xcpt]: <-->

call| expect_error(print("hoho"))

diff| No error

The ChemoSpec2D package implements exploratory methods for 2D-spectrometry data. Scaled data has
negative values, so one cannot take the logarithm. The function centscaleSpectra2D must eject an error in
such cases and this is tested as follows.

Check that log and centering cannot be combined

expect_error(

centscaleSpectra2D(tiny, center = TRUE, scale = "log"),

"Cannot take log of centered data")

9 tinytest 1.0.0

9 expect_silent

Sometimes a test is only run to check that the code does not crash. This function tests that no warnings or
errors are emitted when evaluating it’s argument.

R> expect_silent(print(10))

----- PASSED : <-->

call| expect_silent(print(10))

R> expect_silent(stop("haha"))

----- FAILED[xcpt]: <-->

call| expect_silent(stop("haha"))

diff| Execution was not silent. An error was thrown with message

diff| 'haha'

The validate package defines an object called a validation, which is the result of confronting a dataset with
one or more data quality restrictions in the form of rules. A validation object can be plotted, but this would
crash with an error in a certain edge case. Here is a test that was added in response to a reported issue.

data <- data.frame(A = 1)

rule <- validator(A > 0)

cf <- confront(data, rule)

expect_silent(plot(rule))

expect_silent(plot(cf))

The lumberjack package creats log files that track changes in data. In one test it is first tested whether a file
has been generated, next it is tested whether it can be read properly. This is also an example of programming
over test results, since the file is deleted if it exists.

run("runs/multiple_loggers.R")

simple_ok <- expect_true(file.exists("runs/simple_log.csv"))

expect_silent(read.csv("runs/simple_log.csv"))

if (simple_ok) unlink("runs/simple_log.csv")

10 tinytest 1.0.0

10 ignore

Ignore allows you to not record the result of a test. It is not used very often. Its use is probably almost exclusive
to tinytest where it is used while testing the expectation functions.

The following result is not recorded (note placement of brackets!)

ignore(expect_equal)(1+1, 2)

The digest package computes hashes of R objects. It uses ignore in one of it’s files.

mantissa <- gsub(" [0-9]*$", "", x.hex)

ignore(expect_true)(all(

sapply(

head(seq_along(mantissa), -1),

function(i){

all(

grepl(

paste0("^", mantissa[i], ".*"),

tail(mantissa, -i)

)

)

}

)

))

11 tinytest 1.0.0

References

[1] anytime D. Eddelbuettel (2019) Anything to ‘POSIXct’ or ‘Date’ Converter. R package version 0.3.3.5

[2] benchr Arttem Klevtsov (2019) High Precise Measurement of R Expressions Execution Time. R package
version 0.2.3-1.

[3] ChemoSpec2D B.A. Hanson (2019) Exploratory Chemometrics for 2D Spectroscopy R package version
0.3.166

[4] digest D. Eddelbuettel (2019) Create Compact Hash Digests of R Objects R package version 0.6.20

[5] stringdist M. van der Loo (2014). The stringdist package for approximate string matching. The R Journal
6(1) 111-122

[6] ulid B. Rudis (2019) Generate Universally Unique Lexicographically Sortable Identifiers. R package version
0.3.0

[7] validate M. van der Loo, E. de Jonge and P. Hsieh (2019) Data Validation Infrastructure for R. R package
version 0.2.7

[8] wand B. Rudis (2019) Retrieve ‘Magic’ Attributes from Files and Directories R package version 0.5.0

12 tinytest 1.0.0

https://cran.r-project.org/package=anytime
https://CRAN.R-project.org/package=RUnit
https://cran.r-project.org/package=cyclocomp
https://cran.r-project.org/package=digest
https://cran.r-project.org/package=stringr
https://cran.r-project.org/package=ulid
https://cran.r-project.org/package=validate
https://cran.r-project.org/package=wand

	expect_equal
	expect_equivalent
	expect_identical
	expect_null
	expect_true, expect_false
	expect_message
	expect_warning
	expect_error
	expect_silent
	ignore

