Using tinytest

Mark van der Loo

June 28, 2019 | Package version 0.9.6

Contents

1

2

Purpose of this package: unit testing

Expressing tests

2.1 Test functions e
2.2 Alternative syntax L e
2.3 Interpreting the output and print options

Test files
3.1 Summarizing test results, getting thedata L
3.2 Programming over tests, ignoring test resultso oL

3.3 Running order and side effects L

Testing packages

4.1 Build—install-test interactively
4.2 Using data stored in files
4.3 Skipping tests on CRAN
4.4 Testing your package after installation

A few tips on packages and unit testing

5.1 Make your package spherical
5.2 Test the surface, not the volume
5.3 How many testsdo I need?

54 lIt'snotabug, it'satest!

Reading guide

o N N o o o0~ W w w NN

© ©O© o0 o0 ©

Readers of this document are expected to know how to write R functions and have a basic understanding of a
package source directory structure.

1 Purpose of this package: unit testing

The purpose of unit testing is to check whether a function gives the output you expect, when it is provided
with certain input. So unit testing is all about comparing desired outputs with realized outputs. The purpose
of this package is to facilitate writing, executing and analyzing unit tests.

2 Expressing tests

Suppose we define a function translating pounds (Ibs) to kilograms inaccurately.

R> 1bs2kg <- function(x){
if (x <0){
stop(sprintf ("Expected nonnegative weight, got %g",x))
}
x/2.20
}

We like to check a few things before we trust it.

R> library(tinytest)
R> expect_equal(lbs2kg(1), 1/2.2046)

————— FAILED[data]: <-->
call| expect_equal(lbs2kg(1), 1/2.2046)
diff| Mean relative difference: 0.002086546

R> expect_error(lbs2kg(-3))

————— PASSED D<==>
call| expect_error(1bs2kg(-3))

The value of an expect_x* function is a logical, with some attributes that record differences, if there are
any. These attributes are used to pretty-print the results.

R> isTRUE(expect_true(2 == 1 + 1))
[1] TRUE

2.1 Test functions

Currently, the following expectations are implemented.
Function what it looks for
expect_equal (current, target) equality (using all.equal)

expect_equivalent(current, target) equality, ignoring attributes
expect_identical (current, target) equality, (using, identical)

expect_true(current) does ‘current’ evaluate to TRUE
expect_false(current) does ‘current’ evaluate to FALSE
expect_error(current, pattern) error message matching pattern
expect_warning(current, pattern) warning message matching pattern
expect_message (current, pattern) message matching pattern
expect_silent(current, pattern) expect no warnings or errors (just run)

Here, target is the intended outcome and current is the observed outcome. Also, pattern is interpreted as
a regular expression.

R> expect_error(lbs2kg(-3), pattern="nonnegative")

2 tinytest 0.9.6

————— PASSED P<==>
call| expect_error(lbs2kg(-3), pattern = "nonnegative")

R> expect_error(lbs2kg(-3), pattern="foo")

————— FAILED [xcpt]: <-->

call| expect_error(1lbs2kg(-3), pattern = "foo")
diff| The error message:

diff| 'Expected nonnegative weight, got -3'
diff| does not match pattern 'foo'

2.2 Alternative syntax

The syntax of the test functions should be familiar to users of the testthat package[l]. In test files only, you
can use equivalent functions in the style of RUnit[2]. To be precise, for each function of the form expect_lol
there is a function of the form checkLol.

2.3 Interpreting the output and print options

Let's have a look at an example again.
R> expect_false(1 + 1 ==2)

————— FAILED[data]: <-->
call| expect_false(l + 1 == 2)
diff| Expected FALSE, got TRUE

The output of these functions is pretty self-explanatory, nevertheless we see that the output of these expect-
functions consist of

e The result: FAILED or PASSED.
e The type of failure (if any) between square brackets. Current options are as follows.
— [datal there are differences between observed and expected values.
— [attr] there are differences between observed and expected attributes, such as column names.
— [xcpt] an exception (warning, error) was expected but not observed.
When relevant (see §3), the location of the test file and the relevant line numbers.
When necessary, a summary of the differences between observed and expected values or attributes.
The test call.

The result of an expect_ function is a tinytest object. You can print them in long format (default) or in
short, one-line format like so.

R> print(expect_equal(1+1l, 3), type="short")
FAILED[data]: <--> expect_equal(l + 1, 3)

Functions that run multiple tests return an object of class tinytests (notice the plural). Since there may be
a lot of test results, tinytest tries to be smart about printing them. The user has ultimate control over this
behaviour. See

R> 7print.tinytests

for a full specification of the options.

3 Test files

In tinytest, tests are scripts, interspersed with statements that perform checks. An example test file in tinytest
can look like this.

3 tinytest 0.9.6

print method

contents of test_addOne.R
addOne <- function(x) x + 2
expect_true(addOne (0) > 0)

hihi <- 1
expect_equal (addOne (hihi), 2)

A particular file can be run using
R> run_test_file("test_addOne.R", verbose=FALSE)

————— FAILED[data]: test_addOne.R<8--8>
call| expect_equal (addOne(hihi), 2)
diff| Mean relative difference: 0.3333333

Showing 1 out of 2 test results; 1 tests failed

We use verbose=FALSE to avoid cluttering the output in this vignette. By default, verbosity is turned on, and
a colorized counter is shown while tests are run. It shows number of tests uncolored, number of failures in red
and number of passes in green. If you work with a terminal that does not support ANSI color codes, or if you
are uncomfortable reading these colors, use color=FALSE or set options(tt.pr.color=FALSE).

The numbers between <-> indicate at what lines in the file the failing test can be found. By default only failing
tests are printed. You can store the output and print all of them.

R> test_results <- run_test_file("test_addOne.R", verbose=FALSE)
R> print(test_results, passes=TRUE)

————— PASSED : test_addOne.R<5--5>
call| expect_true(addOne(0) > 0)

————— FAILED[data]: test_addOne.R<8--8>
call| expect_equal(addOne(hihi), 2)

diff| Mean relative difference: 0.3333333

Or you can set

R> options(tt.pr.passes=TRUE)

to print all results during the active R session.

To run all test files in a certain directory, we can use

R> run_test_dir("/path/to/your/test/directory")

By default, this will run all files of which the name starts with test_, but this is customizable.

3.1 Summarizing test results, getting the data

To create some results, run the tests in this package.

R> out <- run_test_dir(system.file("tinytest", package="tinytest")
, verbose=FALSE)

The results can be turned into data using as.data.frame.
R> head(as.data.frame(out), 3)

result call diff short
1 TRUE expect_true (ignore (checkTrue) (TRUE)) <NA> <NA>
2 TRUE expect_true(ignore(checkFalse) (FALSE)) <NA> <NA>

4 tinytest 0.9.6

run_test_file

run_test_dir

as.data.frame

3 TRUE expect_true(ignore(checkEqual) (1 + 1, 2)) <NA> <NA>
file first last

1 test_RUnit_style.R 4 4
2 test_RUnit_style.R 5 5
3 test_RUnit_style.R 6 6

The last two columns indicate the line numbers where the test was defined.

A ‘summary’ of the output gives a table with passes and fails per file.

summary
R> summary(out)
tinytests object with 55 results, 55 passing, O failing
Results

File Tests passes fails

test_RUnit_style.R 5 5 0

test_env_A.R 2 2 0

test_env_B.R 6 6 0

test_file.R 10 10 0

test_gh_issue_17.R 2 2 0

test_init.R 1 1 0

test_tiny.R 29 29 0

Total 55 55 0
3.2 Programming over tests, ignoring test results
Test scripts are just R scripts intersperced with tests. The test runners make sure that all test results are
caught, unless you tell them not to. For example, since the result of a test is a logical you can use them as
a condition.
R> 1if (expect_equal(l + 1, 2)){

expect_true(2 > 0)
}

Here, the second test (expect_true(2 > 0)) is only executed if the first test results in TRUE. In any case the
result of the first test will be caught in the test output, when this is run with run_test_file run_test_dir,
test_all, build_install_test or through R CMD check using test_package.
If you want to perform the test, but not record the test result you can do the following (note the placement of Lgmore

the brackets).

R> if (ignore(expect_equal) (1+1, 2)){
expect_true(2>0)

————— PASSED Do<==>
call| expect_true(2 > 0)

Other cases where this may be useful is to perform tests in a loop, e.g. when there is a systematic set of cases
to test.

3.3 Running order and side effects

It is a generally a good idea to write test files that are independent from each other. This means that the
order of running them is unimportant for the test results and test files can be maintained independently. The
function run_test_file and by extension run_test_dir, test_all, and test_package encourage this by
resetting

5 tinytest 0.9.6

e options, set with options();
e environment variables, set with Sys.setenv()

after a test file is executed.
To escape this behavior, use base: :Sys.setenv () respectively base: :options(). Alternatively use remove_side_effects=FA

R> run_test_dir("/path/to/my/testdir"
, remove_side_effects = FALSE)
R> test_all("/path/to/my/testdir"
, remove_side_effects = FALSE)
R> # Only in tests/tinytest.R:
R> test_package("PACKAGENAME", remove_side_effects=FALSE)

Test files are sorted and run based on the current locale. This means that the order of execution is in general not
platform-independent. You can control the sorting behavior interactively or by setting options(tt.collate).
To be precise, adding

R> options(tt.collate="C")

to /tests/tinytest.R before running test_package will ensure bytewise sorting on most systems. See also
help("run_test_dir").

4 Testing packages

Using tinytest for your package is pretty easy.

1. Testfiles are placed in /inst/tinytest. The testfiles all have names starting with test (for example
test_haha.R).
2. In the file /tests/tinytest.R you place the code

if (requireNamespace("tinytest", quietly=TRUE)){
tinytest: :test_package ("PACKAGENAME")
}

3. In your DESCRIPTION file, add tinytest to Suggests:.
You can automatically create a minimal running test infrastructure with the setup_tinytest function. _
setup_tinytest
R> setup_tinytest("/path/to/your/package")

In a terminal, you can now do
R CMD build /path/to/your/package
R CMD check PACKAGENAME X.Y.Z.tar.gz
and all tests will run.
To run all the tests interactively, make sure that all functions of your new package are loaded. After that, run cost a1l
R> test_all("/path/to/your/package")

where the default package directory is the current working directory.

4.1 Build—install-test interactively

The most realistic way to unit-test your package is to build it, install it and then run all the tests. The function
R> build_install_test("/path/to/your/package")

does exactly that. It builds and installs the package in a temporary directory, starts a fresh R session, loads
the newly installed package and runs all tests. The return value is a tinytests object.

6 tinytest 0.9.6

The package is built without manual or vignettes to speed up the whole process.

4.2 Using data stored in files

When your package is tested with test_package, tinytest ensures that your working directory is the testing
directory (by default tinytest). This means you can read files that are stored in your folder directly.

Suppose that your package directory structure looks like this (default):

/inst
/tinytest
/test.R
/women.csv

Then, to check whether the contents of women.csv is equal to the built-in women dataset, the content of
test.R looks as follows.

R> dat <- read.csv("women.csv")
R> expect_equal(dat, women)

4.3 Skipping tests on CRAN

It is not possible to detect whether a test is running on CRAN. This means we are forced to detect that we
are running tests in our own environment.

In the following example we use the host name to detect if we are running on our own machine and explicitly
pass this information to test_package.

contents of pkgdir/tests/tinytest.R

if (requireNamespace("tinytest", quietly=TRUE)){
home <- identical(Sys.info() ["nodename"], "YOURHOSTNAME")
tinytest: :test_package ("PKGNAME", at_home = home)

}

Other ways to detect whether you are running ‘at home’ include

e Set a custom environment variable (from your OS) and detect it with Sys.getenv.
home <- identical(Sys.getenv("HONEYIMHOME"), "TRUE")

e Use 4-number package versioning while developing and 3-number versioning for CRAN releases’.
home <- length(unclass(packageVersion("PKGNAME")) [[1]]) ==

When tests are run interactively

All the interactive test runners have at_home=TRUE by default, so while you are developing all tests are run,
unless you exclude them explicitly.

R> run_test_file("test_hehe.R", verbose=FALSE)

All ok (1 results)

R> run_test_file("test_hehe.R", verbose=FALSE, at_home=FALSE)
A1l ok (0 results)

Here is an overview of test runners and their default setting for at_home.

!As recommended here by Dirk Eddelbuettel.

7 tinytest 0.9.6

https://stackoverflow.com/questions/36166288/skip-tests-on-cran-but-run-locally

Function Default at_home Intended use

run_test_file TRUE Interactive by developer
run_test_dir TRUE Interactive by developer
test_all TRUE Interactive by developer
build_install_test TRUE Interactive by developer
test_package FALSE R CMD check, or after installation by user.

4.4 Testing your package after installation

Supposing your package is called hehe and the tinytest infrastructure is used. If the package is installed, the
following command runs hehe’s tests.

R> tinytest::test_package("hehe")

This can come in handy when a user of hehe reports a bug and you want to make sure all tested functionality
works on the user’s system.

5 A few tips on packages and unit testing

5.1 Make your package spherical

Larger packages typically consist of functions that are visible to the users (exported functions) and a number
of functions that are only used by the exported functions. For example:

R> # exported, user-visible function

R> inch2cm <- function(x){
x*conversion_factor("inch")

}

R> # not exported function, package-internal

R> conversion_factor <- function(unit){
confac <- c(inch=2.54, pound=1/2.2056)
confac [unit]

}

We can think of the exported functions as the surface of the package and all the other functions as the volume.
The surface is what a user sees, the volume is what the developer sees. The surface is how a user interacts
with a package.

If the surface is small (few functions exported), users are limited in the ways they can interact with your package
and that means there is less to test. So as a rule of thumb, it is a good idea to keep the surface small. Since
a sphere has the smallest surface-to-volume ratio possible, | refer to this rule as keep your package spherical.

By the way, the technical term for the surface of a package is API (application program interface).

5.2 Test the surface, not the volume

Unexpected behavior (a bug) is often discovered when someone who is not the developer starts using code.
Bugfixing implies altering code and it may even require you to refactor large chunks of code that is internal to
a package. If you defined extensive tests on non-exported functions, this means you need to rewrite the tests as
well. As a rule of thumb, it is a good idea to test only the behaviour at the surface, so as a developer you have
more freedom to change the internals. This includes rewriting and renaming internal functions completely.

By the way, it is bad practice to change the surface, since that means you are going to break other people’s
code. Nobody likes to program against an API that changes frequently, and everybody hates to program
against an API that changes unexpectedly.

8 tinytest 0.9.6

5.3 How many tests do | need?

When you call a function, you can think of its arguments flowing through a certain path from input to output.
As an example, let's take a look again at a new, slightly safer unit conversion function.

R> pound2kg <- function(x){

stopifnot(is.numeric(x))

if (any(x < 0)){
warning("Found negative input, converting to positive")
x <- abs(x)

}

x/2.2046

}

If we call 1bs2kg with argument 2, we can write:
2 -> /2.2046 -> output
If we call 1bs2kg with argument -3 we can write
-3 -> abs() -> /2.2046 -> output
Finally, if we call pound2kg with "foo" we can write
"foo" -> stop() -> Exception

So we have three possible paths. In fact, we see that every nonnegative number will follow the first path, every
negative number will follow the second path and anything nonnumeric follows the third path. So the following
test suite fully tests the behaviour of our function.

R> expect_equal (pound2kg(1), 1/2.2046)

R> # test for expected warning, store output
R> expect_warning(out <- pound2kg(-1))

R> # test the output

R> expect_equal(out, 1/2.2046)

R> expect_error (pound2kg("foo"))

The number of paths of a function is called its cyclomatic complexity. For larger functions, with multiple
arguments, the number of paths typically grows extremely fast, and it quickly becomes impossible to define a
test for each and every one of them. If you want to get an impression of how many tests one of your functions
in needs in principle, you can have a look at the cyclocomp package of Gabor Csardi[3].

Since full path coverage is out of range in most cases, developers often strive for something simpler, namely
full code coverage. This simply means that each line of code is run in at least one test. Full code coverage is
no guarantee for bugfree code. Besides code coverage it is therefore a good idea to think about the various
ways a user might use your code and include tests for that.

To measure code coverage, | recommend using the covr package by Jim Hester[4]. Since covr is independent
of the tools or packages used for testing, it also works fine with tinytest.

5.4 It’s not a bug, it’s a test!

If users of your code are friendly enough to submit a bug report when they find one, it is a good idea to start
by writing a small test that reproduces the error and add that to your test suite. That way, whenever you work
on your code, you can be sure to be alarmed when a bug reappears.

Tests that represent earlier bugs are sometimes called regression tests. If a bug reappears during development,
software engineers sometimes refer to this as a regression.

) tinytest 0.9.6

References

[1] Unit Testing for R Hadley Wickham (2016). testthat: Get Started with Testing. The R Journal, vol. 3, no.
1, pp. 5-10, 2011

[2] Matthias Burger, Klaus Juenemann and Thomas Koenig (2018). RUnit: R Unit Test Framework R package
version 0.4.32.

[3] cyclocomp: cyclomatic complexity of R code Gébor Csérdi (2016) R package version 1.1.0

[4] covr: Test Coverage for Packages Jim Hester (2018) R package version 3.2.1

10 tinytest 0.9.6

https://cran.r-project.org/package=testthat
https://CRAN.R-project.org/package=RUnit
https://cran.r-project.org/package=cyclocomp
https://CRAN.R-project.org/package=covr

	Purpose of this package: unit testing
	Expressing tests
	Test functions
	Alternative syntax
	Interpreting the output and print options

	Test files
	Summarizing test results, getting the data
	Programming over tests, ignoring test results
	Running order and side effects

	Testing packages
	Build–install–test interactively
	Using data stored in files
	Skipping tests on CRAN
	Testing your package after installation

	A few tips on packages and unit testing
	Make your package spherical
	Test the surface, not the volume
	How many tests do I need?
	It's not a bug, it's a test!

