
Using tinytest

Mark van der Loo

May 10, 2019

Contents

1 Purpose of this package: unit testing 3

2 Expressing tests 3

2.1 Test functions . 3

2.2 Alternative syntax . 4

2.3 Interpreting the output and print options 4

3 Test files 5

3.1 Summarizing test results, getting the data 7

3.2 Programming over tests, ignoring test results 7

4 Testing packages 8

4.1 Build–install–test interactively 9

4.2 Using data stored in files . 9

4.3 Skipping tests on CRAN . 9

4.4 Testing your package after installation 10

5 A few tips on packages and unit testing 10

5.1 Make your package spherical 10

5.2 Test the surface, not the volume 11

5.3 How many tests do I need? . 11

1

5.4 It’s not a bug, it’s a test! . 13

Before you read this

I expect that readers of this document know how to write R functions. If
you want to use tinytest for your package, I expect that you have a basic
understanding of the directory structure that constitutes the source of an R
package.

2

1 Purpose of this package: unit testing

The purpose of unit testing is to check whether a function gives the output
you expect, when it is provided with certain input. So unit testing is all about
comparing desired outputs with realized outputs. The purpose of this package
is to facilitate writing, executing and analyzing unit tests.

2 Expressing tests

Suppose we define a function translating pounds (lbs) to kilograms inaccurately.

R> lbs2kg <- function(x){

if (x < 0){

stop(sprintf("Expected nonnegative weight, got %g",x))

}

x/2.20

}

We like to check a few things before we trust it.

R> library(tinytest)

R> expect_equal(lbs2kg(1), 1/2.2046)

----- FAILED[data]: <-->

call expect_equal(lbs2kg(1), 1/2.2046)

diff Mean relative difference: 0.002086546

R> expect_error(lbs2kg(-3))

----- PASSED : <-->

call expect_error(lbs2kg(-3))

The value of an expect_* function is a logical, with some attributes that
record differences, if there are any. These attributes are used to pretty-print the
results.

R> isTRUE(expect_true(2 == 1 + 1))

[1] TRUE

2.1 Test functions

Currently, the following expectations are implemented.

3

Function what it looks for
expect_equal(current, target) equality (using all.equal)
expect_equivalent(current, target) equality, ignoring attributes
expect_identical(current, target) equality, (using, identical)
expect_true(current) does ‘current’ evaluate to TRUE

expect_false(current) does ‘current’ evaluate to FALSE

expect_error(current, pattern) error message matching pattern

expect_warning(current, pattern) warning message matching pattern

Here, target is the intended outcome and current is the observed outcome.
Also, pattern is interpreted as a regular expression.

R> expect_error(lbs2kg(-3), pattern="nonnegative")

----- PASSED : <-->

call expect_error(lbs2kg(-3), pattern = "nonnegative")

R> expect_error(lbs2kg(-3), pattern="foo")

----- FAILED[xcpt]: <-->

call expect_error(lbs2kg(-3), pattern = "foo")

diff The error message:

diff 'Expected nonnegative weight, got -3'
diff does not match pattern 'foo'

2.2 Alternative syntax

The syntax of the test functions should be familiar to users of the testthat

package[1]. In test files only, you can use equivalent functions in the style of
RUnit[2]. To be precise, for each function of the form expect_lol there is a
function of the form expectLol.

2.3 Interpreting the output and print options

Let’s have a look at an example again.

R> expect_false(1 + 1 == 2)

----- FAILED[data]: <-->

call expect_false(1 + 1 == 2)

diff Expected FALSE, got TRUE

4

The output of these functions is pretty self-explanatory, nevertheless we see that
the output of these expect-functions consist of

• The result: FAILED or PASSED.
• The type of failure (if any) between square brackets. Current options are

as follows.
– [data] there are differences between observed and expected values.
– [attr] there are differences between observed and expected at-

tributes, such as column names.
– [xcpt] an exception (warning, error) was expected but not observed.

• When relevant (see §3), the location of the test file and the relevant line
numbers.

• When necessary, a summary of the differences between observed and ex-
pected values or attributes.

• The test call.

The result of an expect_ function is a tinytest object. You can print them
in long format (default) or in short, one-line format like so.

R> print(expect_equal(1+1, 3), type="short")

FAILED[data]: <--> expect_equal(1 + 1, 3) print method

Functions that run multiple tests return an object of class tinytests (notice
the plural). Since there may be a lot of test results, tinytest tries to be smart
about printing them. The user has ultimate control over this behaviour. See

R> ?print.tinytests

for a full specification of the options.

3 Test files

In tinytest, tests are scripts, interspersed with statements that perform checks.
An example test file in tinytest can look like this.

contents of test_addOne.R

addOne <- function(x) x + 2

expect_true(addOne(0) > 0)

hihi <- 1

5

expect_equal(addOne(hihi), 2)

A particular file can be run using run_test_file

R> run_test_file("test_addOne.R", verbose=FALSE)

----- FAILED[data]: test_addOne.R<8--8>

call expect_equal(2, addOne(hihi))

diff Mean relative difference: 0.5

Showing 1 out of 2 test results; 1 tests failed

We use verbose=FALSE to avoid cluttering the output in this vignette. By
default, verbosity is turned on, and a colorized counter is shown while tests are
run. It shows number of tests uncolored, number of failures in red and number
of passes in green. If you work with a terminal that does not support ANSI
color codes, or if you are uncomfortable reading these colors, use color=FALSE

or set options(tt.pr.color=FALSE).

The numbers between <-> indicate at what lines in the file the failing test can
be found. By default only failing tests are printed. You can store the output
and print all of them.

R> test_results <- run_test_file("test_addOne.R", verbose=FALSE)

R> print(test_results, passes=TRUE)

----- PASSED : test_addOne.R<5--5>

call expect_true(addOne(0) > 0)

----- FAILED[data]: test_addOne.R<8--8>

call expect_equal(2, addOne(hihi))

diff Mean relative difference: 0.5

Or you can set

R> options(tt.pr.passes=TRUE)

to print all results during the active R session.

To run all test files in a certain directory, we can use run_test_dir

R> run_test_dir("/path/to/your/test/directory")

By default, this will run all files of which the name starts with test_, but this
is customizable.

6

3.1 Summarizing test results, getting the data

To create some results, run the tests in this package.

R> out <- run_test_dir(system.file("tinytest", package="tinytest")

, verbose=FALSE)

R>

The results can be turned into data using as.data.frame. . as.data.frame

R> head(as.data.frame(out), 3)

result call diff short

1 TRUE expect_true(ignore(checkTrue)(TRUE)) <NA> <NA>

2 TRUE expect_true(ignore(checkFalse)(FALSE)) <NA> <NA>

3 TRUE expect_true(ignore(checkEqual)(1 + 1, 2)) <NA> <NA>

file first last

1 test_RUnit_style.R 4 4

2 test_RUnit_style.R 5 5

3 test_RUnit_style.R 6 6

The last two columns indicate the line numbers where the test was defined.

A ‘summary‘ of the output gives a table with passes and fails per file.

R> summary(out)

tinytests object with 29 results, 29 passing, 0 failing

Results

File Tests passes fails

test_RUnit_style.R 5 5 0

test_file.R 2 2 0

test_tiny.R 22 22 0

Total 44 10 4

3.2 Programming over tests, ignoring test results

Test scripts are just R scripts intersperced with tests. The test runners make
sure that all test results are caught, unless you tell them not to. For example,
since the result of a test is a logical you can use them as a condition.

R> if (expect_equal(1 + 1, 2)){

expect_true(2 > 0)

}

7

Here, the second test (expect_true(2 > 0)) is only executed if the first test
results in TRUE. In any case the result of the first test will be caught in the
test output, when this is run with run_test_file run_test_dir, test_all,
build_install_test or through R CMD check using test_package.

If you want to perform the test, but not record the test result you can do the
following (note the placement of the brackets). ignore

R> if (ignore(expect_equal)(1+1, 2)){

expect_true(2>0)

}

----- PASSED : <-->

call expect_true(2 > 0)

Other cases where this may be useful is to perform tests in a loop, e.g. when
there is a systematic set of cases to test.

4 Testing packages

Using tinytest for your package is pretty easy.

1. Testfiles are placed in /inst/tinytest. The testfiles all have names
starting with test (for example test_haha.R).

2. In the file /tests/tinytest.R you place the code

if (require(tinytest, quietly=TRUE)){

test_package("PACKAGENAME")

}

3. In your DESCRIPTION file, add tinytest to Suggests:.

In a terminal, you can now do

R CMD build /path/to/your/package

R CMD check PACKAGENAME_X.Y.Z.tar.gz

and all tests will run.

To run all the tests interactively, make sure that all functions of your new
package are loaded. After that, run test_all

R> test_all("/path/to/your/package")

where the default package directory is the current working directory.

Alternatively, you can use build_install_test

8

R> build_install_test("/path/to/your/package")

This will build the package, install it in a temporary directory and run all te
tests.

4.1 Build–install–test interactively

The most realistic way to unit-test your package is to build it, install it and then
run all the test. The function

R> build_install_test()

does exactly that. It builds and installs the package in a temporary directory,
starts a fresh R session, loads the newly installed package and runs all tests.
The return value is a tinytests object.

4.2 Using data stored in files

When your package is tested with test_package, tinytest ensures that your
working directory is the testing directory (by default tinytest). This means
you can files that are stored in your folder directly.

Suppose that your package directory structure looks like this (default):

/inst

/tinytest

/test.R

/women.csv

Then, to check whether the contents of women.csv is equal to the built-in
women dataset, the content of test.R looks as follows.

R> dat <- read.csv("women.csv")

R> expect_equal(dat, women)

Note. This will work with test_all() and with R CMD check but not with
run_test_file() because the latter does not temporarily change working di-
rectory.

4.3 Skipping tests on CRAN

There are limits to the amount of time a test can take on CRAN. For longer
running code it is desirable to automatically toggle these tests off on CRAN,
but to run them during development.

9

You can not really skip tests at CRAN, because there is no certain way to detect
whether a package is tested at one of the CRAN’s machines. However, tests
that are run with test_all or test_dir can be toggled on and off as follows.

R> if (at_home()){

expect_equal(2, 1+1)

}

If a test file is run using test_all or test_dir then by default the code
following the if-conditions is executed. It will be skipped on CRAN since tests
are initiated with test_package in that case. It is possible to switch the tests
off by test_all(..., at_home=FALSE) and similar for test_dir.

4.4 Testing your package after installation

Supposing your package is called hehe and the tinytest infrastructure is used,
the following commands run all of hehe’s tests.

R> library(hehe)

R> library(tinytest)

R> run_test_dir(system.file("tinytest",package="hehe"))

This can come in handy when a user of hehe reports a bug and you want to
make sure all tested functionality works on the user’s system.

5 A few tips on packages and unit testing

5.1 Make your package spherical

Larger packages typically consist of a functions that are visible to the users of
that package (exported functions) as well as a bunch of functions that are used
by the exported functions. For example:

R> # exported, user-visible function

R> inch2cm <- function(x){

x*conversion_factor("inch")

}

R> # not exported function, package-internal

R> conversion_factor <- function(unit){

confac <- c(inch=2.54, pound=1/2.2056)

confac[unit]

10

}

We can think of the exported functions as the surface of your package, and all
the other functions as the volume. The surface is what a user sees, the volume
is what the developer sees. The surface is how a user interacts with a package.

If the surface is small (few functions exported), users are limited in the ways
they can interact with your package, and that means there is less to test. So as
a rule of thumb, it is a good idea to keep the surface small. Since a sphere has
the smallest surface-to-volume ratio possible, I refer to this rule as keep your
package spherical.

By the way, the technical term for the surface of a package is API (application
program interface).

5.2 Test the surface, not the volume

Unexpected behavior (a bug) is often discovered when someone who is not the
developer starts using code. Bugfixing implies altering code and it may even
require you to refactor large chunks of code that is internal to a package. If
you defined extensive tests on non-exported functions, this means you need to
rewrite the tests as well. As a rule of thumb, it is a good idea to test only the
behaviour at the surface, so as a developer you have more freedom to change the
internals. This includes rewriting and renaming internal functions completely.

By the way, it is bad practice to change the surface, since that means you are
going to break other people’s code. Nobody likes to program against an API
that changes frequently, and everybody hates to program against an API that
changes unexpectedly.

5.3 How many tests do I need?

When you call a function, you can think of its arguments flowing through a
certain path from input to output. As an example, let’s take a look again at a
new, slightly safer unit conversion function.

R> pound2kg <- function(x){

stopifnot(is.numeric(x))

if (any(x < 0)){

warning("Found negative input, converting to positive")

x <- abs(x)

}

11

x/2.2046

}

If we call lbs2kg with argument 2, we can write:

2 -> /2.2046 -> output

If we call lbs2kg with argument -3 we can write

-3 -> abs() -> /2.2046 -> output

Finally, if we call pound2kg with "foo" we can write

"foo" -> stop() -> Exception

So we have three possible paths. In fact, we see that every nonnegative number
will follow the first path, every negative number will follow the second path and
anything nonnumeric follows the third path. So the following test suite fully
tests the behaviour of our function.

R> expect_equal(pound2kg(1), 1/2.2046)

R> # test for expected warning, store output

R> expect_warning(out <- pound2kg(-1))

R> # test the output

R> expect_equal(out, 1/2.2046)

R> expect_error(pound2kg("foo"))

The number of paths of a function is called its cyclomatic complexity. For
larger functions, with multiple arguments, the number of paths typically grows
extremely fast, and it quickly becomes impossible to define a test for each and
every one of them. If you want to get an impression of how many tests one
of your functions in needs in principle, you can have a look at the cyclocomp
package of Gábor Csárdi[3].

Since full path coverage is out of range in most cases, developers often strive
for something simpler, namely full code coverage. This simply means that each
line of code is run in at least one test. Full code coverage is no guarantee for
bugfree code. Besides code coverage it is therefore a good idea to think about
the various ways a user might use your code and include tests for that.

To measure code coverage, I recommend using the covr package by Jim Hester[4].
Since covr is independent of the tools or packages used for testing, it also works
fine with tinytest.

12

5.4 It’s not a bug, it’s a test!

If users of your code are friendly enough to submit a bug report when they find
one, it is a good idea to start by writing a small test that reproduces the error
and add that to your test suite. That way, whenever you work on your code,
you can be sure to be alarmed when a bug reappears.

Tests that represent earlier bugs are sometimes called regression tests. If a bug
reappears during development, software engineers sometimes refer to this as a
regression.

References

[1] Unit Testing for R Hadley Wickham (2016). testthat: Get Started with
Testing. The R Journal, vol. 3, no. 1, pp. 5–10, 2011

[2] Matthias Burger, Klaus Juenemann and Thomas Koenig (2018). RUnit: R
Unit Test Framework R package version 0.4.32.

[3] cyclocomp: cyclomatic complexity of r code Gábor Csárdi (2016) R package
version 1.1.0

[4] covr: Test Coverage for Packages Jim Hester (2018) R package version 3.2.1

13

https://cran.r-project.org/package=testthat
https://CRAN.R-project.org/package=RUnit
https://CRAN.R-project.org/package=RUnit
https://cran.r-project.org/package=cyclocomp
https://CRAN.R-project.org/package=covr

	Purpose of this package: unit testing
	Expressing tests
	Test functions
	Alternative syntax
	Interpreting the output and print options

	Test files
	Summarizing test results, getting the data
	Programming over tests, ignoring test results

	Testing packages
	Build–install–test interactively
	Using data stored in files
	Skipping tests on CRAN
	Testing your package after installation

	A few tips on packages and unit testing
	Make your package spherical
	Test the surface, not the volume
	How many tests do I need?
	It's not a bug, it's a test!

