
Analysis of complex survey samples.

Thomas Lumley
Department of Biostatistics
University of Washington

April 15, 2004

Abstract

I present software for analysing complex survey samples in R. The
sampling scheme can be explicitly described or represented by replication
weights. Variance estimation uses either replication or linearisation.

1 Introduction

Analysis of complex survey samples has traditionally been the province of spe-
cialised software. This is partly due to the computational burden of large sur-
veys, but the philosophical separation between survey statistics and much of
the rest of the discipline is also important. In most areas of statistics the data
are regarded as random, and the statistician must model their distribution (or
the distribution of statistics computed from them). In traditional ‘design-based’
survey statistics the population data are regarded as fixed and the randomness
comes entirely from the sampling procedure.

The advantage of the design-based view is that the sampling procedure is
under the control of the analyst, and can in principle be known perfectly, the
exception to George Box’s dictum that all models are wrong.

In this paper I describe a package of R code for analysing complex surveys.
Before describing the features of the package I will present a short overview of
the methods used in the survey package. Books covering survey statistics in
more detail include Cochran (1977) and Levy & Lemeshow (1999). Examples
of analyses across multiple computer packages are given at http://www.ats.
ucla.edu/stat/survey/survey_howtochoose.htm.

2 Statistical methods

In the case of simple random sampling from a large population a survey sample
will be nearly an independent and identically distributed sample from an un-
known distribution. The law of large numbers and central limit theorem justify
most of the same analyses from a design-based viewpoint as they do from a
model-based viewpoint.

1

The complications in a complex survey sample result from

stratification Dividing the population into relatively homogenous groups (strata)
and sampling a predetermined number from each stratum will increase
precision for a given sample size

clustering Dividing the population into groups and sampling from a random
subset of these groups (eg geographical locations) will decrease precision
for a given sample size but often increase precision for a given cost.

unequal sampling Sampling small subpopulations more heavily will tend to
increase precision relative to a simple random sample of the same size.

finite population Sampling all of a population or stratum results in an esti-
mate with no variability, and sampling a substantial fraction of a stratum
results in decreased variability in comparison to a sample from an infinite
population.

I have described these in terms of their effect on the design of the survey.
More important to the programmer is their effect on the analysis. Analysing
a stratified sample as if it were a simple random sample will overestimate the
standard errors, analysing a cluster sample as if it were a simple random sam-
ple will usually underestimate the standard errors, as will analysing an unequal
probability sample as if it were a simple random sample. Note that the de-
sign effect and misspecification effect agree (qualitatively) for stratification and
clustering but not for unequal probability sampling.

Clustering can be carried on to multiple levels: e.g., sampling individuals
from families within neighbourhoods within cities. The largest clusters, which
are sampled independently within a stratum, are called PSUs (primary sampling
units). As they are sampled independently they are a fundamental part of the
statistical analysis.

2.1 Weighting

When units are sampled with unequal probability it is necessary to give them
correspondingly unequal weights in the analysis. Suppose 100 individuals are
sampled from each state of the USA. The 100 people sampled from California
represent a population of 34,000,000 people; the 100 sampled from Iowa repre-
sent only 2,900,000 people. Thus, each Californian must receive nearly 12 times
as much weight in a valid analysis.

This inverse-probability weighting has generally the same effect on point esti-
mates as the more familiar inverse-variance weighting, but very different effects
on standard errors. In addition, the general principle in regression modelling
that misspecified weights cause no bias does not apply here: it relies on the
assumption that the model correctly specifies the mean, which is not permissi-
ble in a design-based analysis. In some circumstances a model-based analysis
may be able to omit the weights and thus gain more precision (DuMouchel &
Duncan, 1983).

2

2.2 Variances

Two widely used and fairly general techniques for variance estimation are Taylor
series linearisation and replication weights. The former is based on reducing the
variance estimation problem to estimating the variance of a mean, the latter is
based on the same ideas as the jackknife. These two approaches are discussed
in more detail below and are implemented in the survey package.

Other variance estimation techniques for surveys include the method of ran-
dom groups and PSU-level bootstrapping. The method of random groups is
based on sampling within PSUs. It is described by Wolter (1985), a compre-
hensive reference (at that date) on survey variance estimation. Bootstrapping
at the PSU level, along with BRR and the jackknife methods, is discussed in
Chapter 6 of Shao & Tu (1995).

2.2.1 Variances by linearisation

Taylor series linearisation estimators are very similar to the sandwich variance
estimators widely used in biostatistics and econometrics. Survey-oriented pre-
sentations of the theory are given by Binder (1983), and Chapter 6 of Wolter
(1985).

The principle is simple. Consider estimating the variance of the population
total of a variable Y . Write Ysij for observation j in PSU i in stratum s and
πsij for its sampling probability.

Inverse-probability weighting gives a contribution to the total from each PSU

Ysi· =
∑

j

1
πsij

Ysij ,

and as PSUs are sampled independently within strata the variance of the stra-
tum total can be estimated by the empirical variance of the PSU totals. If ns

is the number of PSUs sampled in the nth stratum then

Ys·· =
ns∑
i=1

Ysi·

Ȳs·· =
1
ns

ns∑
i=1

Ysi·

v̂ar[Ȳs··] =
1

ns − 1

ns∑
i=1

(
Ysi· − Ȳs··

)2
.

This variance will be too large when sampling an appreciable fraction of a
population. When a simple random sample of PSUs is taken in each stratum,
with no further subsampling, the variance can be multiplied by a finite popula-
tion correction 1−fs, where fs is the proportion of PSUs sampled in stratum s.
For other sampling designs the correct finite population adjustments will differ.
Bellhouse (1985) describes algorithms for doing this if the necessary design de-
tails are available. A reviewer points out that in cases where finite-population

3

corrections are substantial it is also important to note that estimation usually
assumes the PSUs are sampled with replacement, which is, of course, not typi-
cally the case.

Finally, adding up estimates for each of S strata gives a total and an estimate
of its variance:

Y··· =
S∑

s=1

Ys··

v̂ar[Y···] =
s∑

s=1

(1− fs)
1

ns − 1

ns∑
i=1

(
Ysi· − Ȳs··

)2
.

Now, in most cases a statistic can be written as the solution θ̂ of an estimat-
ing equation

n∑
i=1

U(Xi; θ) = 0

where θ 7→ U(X; θ) is differentiable (a notable exception being quantiles). The
variance VU of

n∑
i=1

U(Xi; θ)

can be estimated in the same way as the variance of any other population total,
and an asymptotic approximation to the variance of θ̂ is then(

n∑
i=1

∂Ui

∂θ

)−1

VU

(
n∑

i=1

∂Ui

∂θ

)−1

.

With inverse-probability weighting we estimate θ by solving
n∑

1=i

Ũi(Xi, θ) =
n∑

i=1

1
πi

U(Xi; θ) = 0

where πi is the sampling probability for the ith case. The asymptotic approxi-
mation to the variance of θ̂ is then(

n∑
i=1

∂Ũi

∂θ

)−1

VŨ

(
n∑

i=1

∂Ũi

∂θ

)−1

.

Estimating the variance of θ̂ is a matter of estimating the mean of ∂Ũ/∂θ

and the variance of the mean of Ũ(θ) at θ̂, which can be done using standard
methods for means in complex samples.

Survey sampling implementations of these sandwich variances differ from
those in other areas of statistics only in the handling of stratification and finite-
population corrections. The resulting variance estimators are approximately
unbiased but may be quite variable and as a result tend to lead to confidence
intervals that are too short in small samples.

4

2.2.2 Variances by subsampling

A second class of variance estimators is based on the jackknife. Chapters 3 and
4 of Wolter (1985) discuss these estimators from a survey statistics viewpoint.
A different viewpoint is presented in Chapter 6 of Shao & Tu (1995).

In unstratified surveys one PSU at a time is deleted and the others reweighted
to keep the same total weight (known as the JK1 jackknife). For stratified designs
the JKn jackknife removes one PSU at a time, but reweights only the other PSUs
in the same stratum.

The Balanced Repeated Replicates estimator is intended for surveys with ex-
actly two PSUs in each stratum. Subsamples are constructed by giving weights
of 2 to one PSU in a stratum and 0 to the other. While in principle the BRR
estimator would require 2L sets of computations for L strata, it is possible to con-
struct small, balanced sets of half-samples that give exactly the same variance
for a linear statistic and similar variance for nonlinear statistics. These sets of
replicates are constructed according to Plackett–Burman (Plackett & Burman,
1946) designs. The number of replicates in a Plackett–Burman design is always
a multiple of four. It is conjectured that designs exist for any multiple of four,
which would imply that at most L+4 replicates are sufficient (known to be true
for L up to 423). Given a design with m replicates it is easy to construct one with
2m replicates, thus designs with at most 2L replicates can easily be provided.
A library of Hadamard matrices, from which Plackett–Burman designs can be
constructed, is available at http://www.research.att.com/~njas/hadamard/
and Wolter (1985) provides designs for m ≤ 100.

Fay’s method (Judkins, 1990) is a modification of BRR where a parameter
ρ ∈ [0, 1) is chosen and weights of 2−ρ and ρ are used for the two PSUs in each
stratum. This has the advantage of using all the data and may give more stable
estimates if ρ is chosen correctly. Fay’s method reduces to BRR if ρ = 0.

As an alternative to replicates constructed by the analyst, some recent US
government surveys provide replicate weights instead of information on PSUs.
These replicate weights are typically generated by one of the methods described
above, but may then be modified for various reasons. One important use of
replicate weights is to preserve privacy: it may be possible to disguise the PSUs
and so prevent the identification of individuals in small PSUs.

A general formula for variance estimation from replicate weights is

var[θ̂] = C
∑

i

ci(θ̂(wi)− θ̄)⊗2 (1)

where ⊗2 indicates the outer product of a vector with itself. Here θ̂(wi) is the
estimate of θ with the ith set of weights, θ̄ is the average of the replicate esti-
mates of θ, ci is a replication-specific constant and C is an overall scaling factor.
The full-sample estimate θ̂ is sometimes used instead of θ̄. If the average weight
for each observation is the same as its sampling weight there is no difference for
linear statistics and it is not clear which is better for nonlinear statistics.

If L is the number of strata, n the total number of PSUs and ns the number
of PSUs in stratum s the constants are:

5

C ci

JK1 (n− 1)/n 1
JKn 1 (ns − 1)/ns

BRR 1/L 1
Fay 1/(L(1− ρ)2) 1

Only the jackknife methods can readily incorporate a finite-population correc-
tion. Each replicate is specific to a stratum, so the constant ci can be multiplied
by the finite-population correction for that stratum.

2.3 Poststratification and raking

Stratified sampling requires a stratified sampling frame, that is, full prior knowl-
edge of the stratum for every primary sampling unit in the population. It is
often the case that the size of each population stratum is known (eg from Census
data) and that the stratum for each sampled unit can be determined easily, but
that a stratified sampling frame is prohibitively expensive.

Much of the efficiency of stratified sampling can then be recovered by scaling
the sampling weights so that the total weight for each sample stratum is the
same as the stratum size in the population. Variance estimation using replicate
weights is still straightforward: the same scaling is performed on each set of
replicates. Variances by linearisation are more complicated, at least in small
samples.

In some situations the joint population distribution of a number of stratifying
factors is not known but their marginal distributions are known. It would be
desirable to post-stratify on each of these factors, but matching the marginal
distribution of one factor may unmatch the marginal distribution of others.
However, it is typically the case that iteratively post-stratifying on each factor
in turn will lead to a converging sets of weights where the marginal distribution
of each factor matches the population margins. This iterative algorithm is called
raking.

Convergence will always occur if the sample joint distribution of the factors
has no empty cells. If there are empty cells then convergence will occur whenever
there is a joint distribution with the desired margins and the same pattern of
empty cells.

2.4 Subpopulations

A subpopulation of a survey cannot simply be treated as a smaller survey.
The subpopulation may have fewer PSUs in some strata, resulting in a ran-
dom, rather than fixed, sample size. Conceptually, the correct analysis involves
keeping the entire sample but assigning zero weight to observations not in the
subpopulation. This strategy maintains, for example, the equivalence between
separate regression models in subpopulations and a common regression with
interactions.

6

A subpopulation of a survey design specified by replicate weights, on the
other hand, can simply be analysed as a subset. The replicate weights are
based on the design of the full sample and are still correct.

There is a minor computational ambiguity in using zero weights versus sub-
setting: should observations with no weight still contribute to constraints in
constrained models? For example, in fitting a linear model to binomial data,
should the coefficients be restricted so that fitted proportions are in [0, 1] even
for cases with zero weight? There is no entirely satisfactory answer, but it is cer-
tainly simpler for cases with zero weight not to participate even in constraints.

3 The survey package

The survey package consists entirely of interpreted R code. This paper describes
version 2.2. Future versions will be available at the Comprehensive R Archive
Network (http://cran.r-project.org).

The survey package has two main purposes. The first is to bind the neces-
sary design metadata to the data so that the correct analysis adjustments can
be performed reliably and automatically. This is done by constructor functions
svydesign and svrepdesign that create objects containing a data frame and
design information. Extracting subsets of the data must preserve the meta-
data and also allow for accurate subpopulation estimates, so methods for "[",
subset, update, and the na.action commands are provided.

The second main purpose is to provide valid variance estimates for statistics
computed on these objects. The svyCprod function abstracts the computations
needed for Taylor series linearisation and svrVar does a similar job for replicate
weights. The withReplicates() function computes replicate-weight variances
for arbitrary statistics specified by functions or expressions.

Computation of the statistics themselves is performed largely by existing R
functions, the survey package merely providing wrappers. For example, svyglm
and svrepglm construct calls to glm to fit generalised linear models and then
modify the resulting objects to give correct variances. This approach makes it
easy to extend the package, at some cost in speed and memory use.

3.1 Sampling design and Taylor series linearisation

The svydesign function constructs an object that specifies the strata, PSUs,
sampling weights or probabilities, and finite population correction for a survey
sample.

The resulting objects can be used in the statistical functions whose names be-
gin svy: svymean, svyvar, svyquantile, svytable, svyglm, svycoxph, svymle.
Standard errors are computed using Taylor series linearisation (where available).

The modelling functions svyglm and svycoxph require that all the variables
in the model are contained in the survey design object. This would be good
practice in any case; it is required to avoid scoping problems, as these func-
tions work by constructing and evaluating calls to the ordinary glm and coxph

7

functions.
Fairly general pseudolikelihood estimation can be done with svymle. This

function takes a loglikelihood and a set of linear predictors for some or all of its
parameters, and maximises the estimated population loglikelihood

ˆ̀(θ) =
n∑

i=1

1
πi

`i(θ)

where `i(θ) is the loglikelihood of the ith observation.

3.2 Replicate weight designs

The svrepdesign function describes surveys specified solely in terms of replicate
weights. A sampling design object can be converted to a replicate-weight design
using as.svrepdesign. There are two basic classes of replicate weights: BRR
and jackknife, but arbitrary designs can be specified by giving the replicate
weights and the scaling parameters scale and rscales (C and ci respectively,
in equation 1). Poststratification is available in the postStratify function and
raking in the rake function.

When converting from a sampling design object the functions jk1weights,
jknweights and brrweights are used to construct replicate weights, and these
can be called directly by the user. In constructing BRR weights the package
uses precomputed Hadamard matrices with dimension 8, 16, 20, 24, 36, 72, and
256, and then doubles the dimension of these matrices as necessary to create
other sizes.

The survey replicate objects produced by as.svrepdesign or svrepdesign
can be used in the statistical functions whose names begin svrep: svrepmean
svreptable, svrepglm, and in the withReplicates function. The withReplicates
function allows arbitrary statistics to be analysed, but requires more coding to
use.

Fay’s variance estimator can be specified when the design is constructed,
thus fixing ρ, and giving a design of type ”Fay”. It may also be specified for
designs of type ”BRR” at analysis time, allowing different ρ to be used.

A finite population correction for jackknife weights can be specified by mul-
tipling rscales (ci in equation 1) by the correction (1-sampling fraction in the
stratum). This is done automatically by as.svrepdesign with type="JK1" or
type="JKn" if the original design contains a finite population correction.

4 How to use the package

The first step is to create an appropriate design object that contains the data
variables and the metadata needed for valid estimation.

1. If you have design information (weights or sampling probabilities, PSU
and stratum identifiers) and want to use Taylor series linearisation, use
svydesign

8

2. If you have design information and want to use jackknife or BRR methods,
use svydesign to create a survey.design object and then use as.svrepdesign
to convert it to a replication-weights object.

3. If you have replication weights rather than design information use svrepdesign

Data processing to create new variables may be done either before or af-
ter the design object is created. It may be easier to do this before, as after
the design object is created the update function provides the only access for
adding variables. Data processing to remove observations should be done after
the object is created, as otherwise the design information will not be updated
correctly.

The analysis functions usually take as arguments this design object and a
model formula specifying variables to be used. Names of analysis functions for
objects created with svydesign begin with “svy”, and the functions for objects
created with svrepdesign or as.svrepdesign begin with “svr”.

5 Examples

5.1 California School Performance

California public schools test their students each year. School-level summaries
of the results of these tests in schools with more than 100 students are made
publically available by the Department of Education at http://www.cde.ca.
gov/psaa/api. Here we analyse three subsamples, from files published by
Academic Technology Services at UCLA (http://www.ats.ucla.edu/stat/
stata/Library/svy_survey.htm): a stratified independent sample, a one-stage
cluster sample and a two-stage cluster sample. For each subsample we compute
the means of two variables, and fit a linear regression model.

First we build survey.design objects and use the Taylor series linearisa-
tion methods, then we convert these to use jackknife-based replication weights.
Finally we show how post-stratification and raking affect the estimation of the
means.

Stratified Independent Sample

First consider a sample stratified by level of school (elementary, middle, high),
in the data frame strat. The variable snum identifies a school, stype is the level
of school, fpc is the number of schools in the stratum, and pw is the sampling
weights. The initial step is to define a survey design object containing the data
and metadata.

> dstrat<-svydesign(ids=~snum, strata=~stype, fpc=~fpc, data=strat, weight=~pw)
> dstrat
Stratified Independent Sampling design
svydesign(ids = ~snum, strata = ~stype, fpc = ~fpc, data = strat,

weight = ~pw)

9

The summary method for such an object shows more detail about the design

> summary(dstrat)
Stratified Independent Sampling design
svydesign(ids = ~snum, strata = ~stype, fpc = ~fpc, data = strat,

weight = ~pw)
Probabilities:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.02262 0.02262 0.03587 0.04014 0.05339 0.06623
Stratum sizes:

E H M
obs 100 50 50
design.PSU 100 50 50
actual.PSU 100 50 50
Population stratum sizes (PSUs):
strata N

1 E 4421
2 H 755
3 M 1018
Data variables:
[1] "cds" "stype" "name" "sname" "snum" "dname"
[7] "dnum" "cname" "cnum" "flag" "pcttest" "api00"

[13] "api99" "target" "growth" "sch.wide" "comp.imp" "both"
[19] "awards" "meals" "ell" "yr.rnd" "mobility" "acs.k3"
[25] "acs.46" "acs.core" "pct.resp" "not.hsg" "hsg" "some.col"
[31] "col.grad" "grad.sch" "avg.ed" "full" "emer" "enroll"
[37] "api.stu" "pw" "fpc"

and we can now estimate the mean API performance score, the total enrollment
across the state, and the relationship between API score and some measures of
social disadvantage

> svymean(~api00+I(api00-api99), dstrat)
mean SE

api00 662.287 9.4089
I(api00 - api99) 32.893 2.0511
> svytotal(~enroll, dstrat)

total SE
enroll 3687178 114642
> summary(svyglm(api00~ell+meals+mobility, design=dstrat))

Call:
svyglm(formula = api00 ~ ell + meals + mobility, design = dstrat)

Survey design:
svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat,

fpc = ~fpc)

10

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 820.8873 10.0777 81.456 <2e-16 ***
ell -0.4806 0.3920 -1.226 0.222
meals -3.1415 0.2839 -11.064 <2e-16 ***
mobility 0.2257 0.3932 0.574 0.567

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Cluster sample

Next we consider sampling 15 school districts and taking all the schools in each
of these districts, strat. The variable snum identifies a school, stype is the level
of school, fpc is the number of schools in the stratum, and pw is the sampling
weights. The initial step is to define a survey design object containing the data
and metadata.

> dclus1<-svydesign(ids=~dnum, fpc=~fpc, data=clus1, weight=~pw)
> dclus1
1 - level Cluster Sampling design
With (15) clusters.
svydesign(ids = ~dnum, fpc = ~fpc, data = clus1, weight = ~pw)
> summary(dclus1)
1 - level Cluster Sampling design
With (15) clusters.
svydesign(ids = ~dnum, fpc = ~fpc, data = clus1, weight = ~pw)
Probabilities:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.02954 0.02954 0.02954 0.02954 0.02954 0.02954
Population size (PSUs): 757
Data variables:
[1] "cds" "stype" "name" "sname" "snum" "dname" "dnum"
[8] "cname" "cnum" "flag" "pcttest" "api00" "api99" "target"

[15] "growth" "sch.wide" "comp.imp" "both" "awards" "meals" "ell"
[22] "yr.rnd" "mobility" "acs.k3" "acs.46" "acs.core" "pct.resp" "not.hsg"
[29] "hsg" "some.col" "col.grad" "grad.sch" "avg.ed" "full" "emer"
[36] "enroll" "api.stu" "fpc" "pw" "strat"

and then perform the same analyses as for the stratified study

> svymean(~api00+I(api00-api99), dclus1)
mean SE

api00 644.169 23.5422
I(api00 - api99) 37.191 3.0852
> svytotal(~enroll, dclus1)

total SE

11

enroll 3404940 932235
> summary(svyglm(api00~ell+meals+mobility, design=dclus1))

Call:
svyglm(formula = api00 ~ ell + meals + mobility, design = dclus1)

Survey design:
svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 819.2791 21.3900 38.302 <2e-16 ***
ell -0.5167 0.3240 -1.595 0.113
meals -3.1232 0.2781 -11.231 <2e-16 ***
mobility -0.1689 0.4449 -0.380 0.705

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Two-stage cluster sample

Finally we consider a two-stage cluster-sampled design in which 40 school dis-
tricts are sampled and then up to five schools from each district.

> dclus2<-svydesign(ids=~dnum+snum, data=clus2, weight=~pw)
> dclus2
2 - level Cluster Sampling design
With (40,126) clusters.
svydesign(ids = ~dnum + snum, data = clus2, weight = ~pw)
> summary(dclus2)
2 - level Cluster Sampling design
With (40,126) clusters.
svydesign(ids = ~dnum + snum, data = clus2, weight = ~pw)
Probabilities:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.02034 0.02034 0.02034 0.02034 0.02034 0.02034
Data variables:
[1] "cds" "stype" "name" "sname" "snum" "dname" "dnum"
[8] "cname" "cnum" "flag" "pcttest" "api00" "api99" "target"

[15] "growth" "sch.wide" "comp.imp" "both" "awards" "meals" "ell"
[22] "yr.rnd" "mobility" "acs.k3" "acs.46" "acs.core" "pct.resp" "not.hsg"
[29] "hsg" "some.col" "col.grad" "grad.sch" "avg.ed" "full" "emer"
[36] "enroll" "api.stu" "pw"
> svymean(~api00+I(api00-api99), dclus2)

mean SE
api00 703.810 23.1481
I(api00 - api99) 26.365 3.2776

12

> svytotal(~enroll, dclus2, na.rm=TRUE)
total SE

enroll 2927501 409261
> summary(svyglm(api00~ell+meals+mobility, design=dclus2))
svydesign(id = ~dnum + snum, weights = ~pw, data = apiclus2)

Call:
svyglm(formula = api00 ~ ell + meals + mobility, design = dclus2)

Deviance Residuals:
Min 1Q Median 3Q Max

-19.17319 -4.87463 -0.05346 6.05140 23.33656

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 821.4515 27.8954 29.448 < 2e-16 ***
ell -1.3000 1.1559 -1.125 0.262920
meals -2.9221 0.7666 -3.812 0.000218 ***
mobility 0.5799 0.5975 0.971 0.333679

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note that no finite population correction has been specified. The package does
not currently support finite population corrections for multistage sampling.

Jackknife for stratified independent sample

The default replicate weight method for the stratified sample is the “JKn”
stratified jackknife.

> rstrat<-as.svrepdesign(dstrat)
> rstrat
Survey with replicate weights:
Call: as.svrepdesign(dstrat)
> summary(rstrat)
Survey with replicate weights:
Call: as.svrepdesign(dstrat)
Stratified cluster jackknife (JKn) with 200 replicates.
Variables:
[1] "cds" "stype" "name" "sname" "snum" "dname" "dnum"
[8] "cname" "cnum" "flag" "pcttest" "api00" "api99" "target"

[15] "growth" "sch.wide" "comp.imp" "both" "awards" "meals" "ell"
[22] "yr.rnd" "mobility" "acs.k3" "acs.46" "acs.core" "pct.resp" "not.hsg"
[29] "hsg" "some.col" "col.grad" "grad.sch" "avg.ed" "full" "emer"
[36] "enroll" "api.stu" "pw" "fpc"

and then perform the same analyses

13

> svrepmean(~api00+I(api00-api99), rstrat)
mean SE

api00 662.287 9.4089
I(api00 - api99) 32.893 2.0511
> svreptotal(~enroll, rstrat)

total SE
enroll 3687178 114642
> summary(svrepglm(api00~ell+meals+mobility, design=rstrat))

Call:

svrepglm(formula = api00 ~ ell + meals + mobility, design = rstrat)

Survey design:
as.svrepdesign(dstrat)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 820.8873 10.5190 78.038 <2e-16 ***
ell -0.4806 0.4060 -1.184 0.238
meals -3.1415 0.2939 -10.691 <2e-16 ***
mobility 0.2257 0.4515 0.500 0.618

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

5.1.1 Jackknife for two-stage cluster sample

For the unstratified two-stage cluster sample the default replicate weights method
is the unstratified (JK1) jackknife.

> rclus2<-as.svrepdesign(dclus2)
> rclus2
Survey with replicate weights:
Call: as.svrepdesign(dclus2)
> summary(rclus2)
Survey with replicate weights:
Call: as.svrepdesign(dclus2)
Unstratified cluster jacknife (JK1) with 40 replicates.
Variables:
[1] "cds" "stype" "name" "sname" "snum" "dname" "dnum"
[8] "cname" "cnum" "flag" "pcttest" "api00" "api99" "target"

[15] "growth" "sch.wide" "comp.imp" "both" "awards" "meals" "ell"
[22] "yr.rnd" "mobility" "acs.k3" "acs.46" "acs.core" "pct.resp" "not.hsg"
[29] "hsg" "some.col" "col.grad" "grad.sch" "avg.ed" "full" "emer"

14

[36] "enroll" "api.stu" "pw"
> svrepmean(~api00+I(api00-api99), rclus2)

mean SE
api00 703.810 23.4023
I(api00 - api99) 26.365 3.3067
> svreptotal(~enroll, rclus2, na.rm=TRUE)

total SE
enroll 2927501 409261
> summary(svrepglm(api00~ell+meals+mobility, design=rclus2))

Call:
svrepglm(formula = api00 ~ ell + meals + mobility, design = rclus2)

Survey design:
as.svrepdesign(dclus2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 821.4515 31.3720 26.184 < 2e-16 ***
ell -1.3000 1.3681 -0.950 0.34385
meals -2.9221 0.8679 -3.367 0.00102 **
mobility 0.5799 0.7888 0.735 0.46369

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

5.1.2 Post-stratification and raking of cluster sample

We can post-stratify the two-stage cluster sample by school type to increase
efficiency somewhat. In this example the population stratum sizes are computed
from the known population data; in a real example they would be entered
directly.

> pop.types<-xtabs(~stype,pop)
Error in eval(expr, envir, enclos) : Object "pop" not found
> pop.types<-xtabs(~stype,apipop)
> rclus2p<-postStratify(rclus2, ~stype, pop.types)
> rclus2p
Survey with replicate weights:
Call: postStratify(rclus2, ~stype, pop.types)
> svrepmean(~api00, rclus2p)

mean SE
api00 708.57 21.865

The full set of replicate weights can be displayed with the image function,
and are given in Figure 1. The structure of JK1 weights can easily be seen in
both images. On the right, the faint striping of the background indicates the

15

small adjustments in weights needed for post-stratification. The adjustments
are largest in replicate number 31, which corresponds to a school district where
all the sampled schools were high schools.

10 20 30 40

20
40

60
80

10
0

12
0

Replicate

O
bs

er
va

tio
n

Two−stage sample

10 20 30 40

20
40

60
80

10
0

12
0

Replicate

O
bs

er
va

tio
n

Post−Stratified Two−stage sample

Figure 1: Replicate weights for two-stage cluster sample with and without post-
stratification.

Finally, to illustrate raking we consider the proportion of schools that met
their school-wide growth target in the API program

> rclus2r<-rake(rclus2, list(~stype, ~sch.wide),
+ list(pop.types, xtabs(~sch.wide,data=apipop)))

As these two variables are far from independent in the population, there is
some efficiency gain but not as much as if the population joint distribution of
the two variables were used for post-stratification.

> popboth<-xtabs(~stype+sch.wide,data=pop)
> popboth

sch.wide
stype No Yes

E 472 3949
H 334 421
M 266 752

> rclus2p2<-postStratify(rclus2, ~stype+sch.wide, popboth)

16

> svrepmean(~api00, rclus2)
mean SE

api00 703.81 23.402
> svrepmean(~api00, rclus2p)

mean SE
api00 708.57 21.865
> svrepmean(~api00, rclus2r)

mean SE
api00 710.51 21.351
> svrepmean(~api00, rclus2p2)

mean SE
api00 710.54 20.587

5.2 Design specified only by replicates

In the example above we created replicate weights for a survey whose sampling
design was known. The package can also be used to analyse data where replicate
weights are supplied and the design is otherwise unspecified.

As an example, consider the Alcohol and Drug Services Study (ADSS) con-
ducted for the Substance Abuse and Mental Health Services Administration.
Data for this study are available from the Inter-University Consortium for Polit-
ical and Social Research (http://www.icpsr.umich.edu/), as are descriptions
of the design and analysis conducted by Westat (Mohadjer et al, 2000). This is
a multistage survey of facilities providing treatment for substance abuse. The
data file contains 2394 records and 991 variables. In this example we look at
Phase I of the study, which involves stratified sampling of facilities. Phases II
and III involve further subsampling of clients.

The data files contain 200 replicate weights that are based on a stratified
jackknife (JKn) with modifications to reduce very large weights, account for
nonresponse, and for other reasons. Separate files contain the finite population
correction factors and the quantity we have called ci or rscales.

The design is specified by:

adss<-svrepdesign(data = adssdata, repweights = adssdata[, 782:981],
scale = 1, rscales = adssjack, type = "other",
weights = ~PH1FW0, combined.weights = TRUE, fpc=adssfpc,
fpctype="correction")

where adssdata is the data frame containing all the survey data, and adssjack
and adssfpc are the stratified jackknife ci and the finite population correction
factors. The combined.weights option indicates that the replicate weights al-
ready incorporate the original sampling probabilities.

An example is given in the ADSS User’s Manual (Westat, 2000) of computing
the mean number of clients (B1J2) for each facility type (TYPCARE5). This could
be done with a linear regression

model1<-svrepglm(B1J2~factor(TYPCARE5)-1,design=adss)

17

summary(model1)

Call:
svrepglm(formula = B1J2 ~ factor(TYPCARE5) - 1, design = adss)

Survey design:
svrepdesign(data = adssdata, repweights = adssdata[, 782:981],

scale = 1, rscales = adssjack, type = "other", weights = ~PH1FW0,
combined.weights = TRUE, fpc = adssfpc, fpctype = "correction")

Coefficients:
Estimate Std. Error t value Pr(>|t|)

factor(TYPCARE5)1 14.6843 0.9901 14.83 <2e-16 ***
factor(TYPCARE5)2 27.5658 1.3572 20.31 <2e-16 ***
factor(TYPCARE5)3 250.3610 8.5202 29.38 <2e-16 ***
factor(TYPCARE5)4 92.0009 3.6443 25.25 <2e-16 ***
factor(TYPCARE5)5 114.1075 10.1071 11.29 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

This example illustrates the relationship betweeen memory and speed for
the survey package. It takes 5–6 seconds to run on a PC with 1Gb of memory,
and 15 seconds on an Apple Powerbook with only 256Mb. Peak memory usage
is about 290Mb. It is interesting to compare this with the estimate given by
Dippo et al (1984) for CPU time on an IBM 370 mainframe running the early
NASSVAR replicate-weights program. Their estimate for this analysis would
be 54 CPU-seconds: twenty years advance in computing permits us to use an
interpreted language on commodity hardware and still run nearly ten times
faster.

5.3 Comparisons with other packages

The survey package provides much, but not all, of the survey analysis function-
ality of SUDAAN or of Stata with the add-on survwgt code of Winter (2002).
The most important exceptions are tests for association in contingency tables.
Most other software will compute variances either by Taylor linearisation or
from replicates, but not both.

Other differences result from the underlying properties of R. The survey
package is slow and requires a lot of memory to analyse large surveys, espe-
cially under Windows. It is harder to learn than menu-driven programs such as
WesVar, but on the other hand is more flexible and easier to extend.

Despite the similarity of R and S-PLUS, the survey package would require
some editing to be used with S-PLUS. The file porting.to.S gives suggestions
and the LGPL license of the code is intended to remove any concerns about the
use of the code on other systems.

18

5.4 Acknowledgements

This paper and software has been considerably improved by the comments of
users and of the editors and reviews.

6 References

Bellhouse, D. R. (1985), Computing methods for variance estimation in complex
surveys. Journal of Official Statistics, 1 , 323-329

Binder, D. A. (1983) On the Variances of Asymptotically Normal Estimators
from Complex Surveys. International Statistical Review 51: 279–292.

Brick, J. M., Morganstein, D., Valliant, R. (2000) Analysis of complex sur-
vey data using replication Westat: Rockville, MD. http://www.westat.com/
wesvar/techpapers/ACS-Replication.pdf

Cochran, W.S. (1977) Sampling Techniques (3rd edition). New York: Wiley.
Dippo, C. S., Fay, R. E., Morganstein, D. (1984) Computing variances from

samples with replicate weights. Proceedings of the ASA Section on Survey Re-
search Methods 1984, 489–494 http://www.amstat.org/sections/srms/Proceedings/
papers/1984_094.pdf

DuMouchel, W. H., Duncan, G. J. (1983) Using Sample Survey Weights
in Multiple Regression Analyses of Stratified Samples Journal of the American
Statistical Association 78: 535-543.

Judkins, D. R. (1990) Fay’s method for variance estimation. Journal of
Official Statistics 6: 223–239.

Levy P.S., Lemeshow S (1999) Sampling of Populations: Methods and Ap-
plications (3rd edition). New York, NY: Wiley.

Mohadjer, L., Yansaneh, I., Krenzke, T., Dohrmann, S. (2000) Sample De-
sign, Selection, and Estimation for Phase I of ADSS. Westat: Rockville, MD.
http://www.samhsa.gov/oas/ADSS/SampleDesign1.pdf

Plackett, R. L., Burman, J. P. (1946) The design of optimum multifactorial
experiments. Biometrika 33, 305-325.

Shao J., Tu D. (1995) The Jackknife and Bootstrap. New York, NY: Springer.
Westat (2000) Alcohol and Drug Services Study (ADSS). Data file user’s

manual for the ADSS Phase I facility interview file http://www.samhsa.gov/
oas/ADSS/ADSS1FacilityCB.pdf.

Winter, N. (2002) SURVWGT: Stata module to create and manipulate survey
weights. http://econpapers.hhs.se/software/bocbocode/s427503.htm

Wolter, K. M. (1985) Introduction to Variance Estimation. New York,
NY:Springer.

19

