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GLMs

Generalised Linear Models are popular for independent
observations. They have a model for a function of the mean

g(E[Yi|Xi]) = g(µ) = η = β′Xi

and then either

Yi has an exponential family distribution

var[Yi|Xi] = V (µ)

These lead to the same estimators
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Correlated data

For correlated data the choice between semiparametric and
parametric matters: parametric models typically need the
dependence to be correctly specified. There is also another choice

Model the marginal mean E[Yi|Xi] of observed response
conditional on observed predictors

Model the mean of Y conditional on observed predictors Xi

and enough unobserved variables bi to make Y conditionally
independent.

This is logically independent of the choice between parametric and
semiparametric estimation; methods exist for all four possibilities. It
is easier to construct conditionally specified likelihoods and easier
to estimate marginal means, so conditional models tend to be
parametric and marginal ones semiparametric.
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Replication and Correlation

Statistical methods rely on replication

A function of a large number of independent random
variables that does not depend too much on any one of
them is approximately constant. Talagrand (1998)

independent or longitudinal data have genuine independent
replicates

time series, spatial data often have approximate replicates:
widely separated pieces of space or time are approximately
independent. The various mixing coefficients specify senses
in which functions of many time points are similar to functions
of many independent variables (eg bounds on correlation,
conditional expectation, likelihood ratio)
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Sparse correlation examples

Three examples (only one is really useful) that motivated sparse
correlation:

McCullagh & Nelder’s salamander mating data: a study of
salamanders of the same species from two geographically
distinct areas. The scientific question is whether salamanders
from the same location are more likely to mate than those from
different locations. The observations are of pairs of
salamanders, so the data are not longitudinal or independent.

A crossed random effects logistic model is one possibility
(used by Breslow & Clayton 1993)
A marginalised random effects model (Heagerty)
A Bayesian model, with the marginal contrasts estimated
from the posterior MCMC sample.
?Logistic regression with sandwich variances
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Sparse correlation examples

Nicole Mayer–Hamblett & Steve Self analysed changes in the
HIV genome over time within infected individuals. Binary data
on locations where two samples differ. Again, the data come
from pairs of observations. Not all pairs of observations will
contribute, as within-time and between-time differences are
modelled separately.

Jennifer Nelson’s PhD thesis was on graphical diagnostics for
interrater agreement. She needed to prove that some ordinal
logistic spline models worked. Interrater agreement studies
involve multiple raters and multiple images (eg mammograms).
Observations on the same image or by the same rater will be
correlated. The study will often not be complete (every rater
with every image) and might not even be balanced

In all these examples many observations are pairwise
independent, but there are no true independent replicates.
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Sparse Correlation: simpler cases

For a balanced crossed linear regression design it is fairly easy
to fit a random effects model, and the marginal and conditional
contrasts are the same. Unbalanced designs are
computationally more difficult.

Asymptotic theory for a generalised linear mixed model should
be relatively straightforward, since the likelihood can be written
in terms of iid random effects (though I haven’t seen it done)

When the data are from pairs of individuals in a complete
balanced design, U -statistic theory will describe the properties
of estimators very elegantly.

Bayesians can fit a random effects model by MCMC. Maximum
likelihood is much harder.
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Digression: What are U-statistics?

Statistics of the form
n

∑

i,j=1

h(Xi, Xj)

(where h(·, ·) is usually taken to be antisymmetric) are called
U -statistics (of order 2).
They are not iid sums, but often behave like them. There is a very
comprehensive theory of U -statistics, but it does not extend easily
to other cases of sparse correlation. The theory is based on tricks
for adding more randomness to U -statistics to get iid sums, and
relies strongly on the symmetry of the definition.
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Sparse Correlation: definition

Each observation has a neigbourhood Si.

Observations i and j are independent if i 6∈ Sj

Sets of observations A and B are independent if no i ∈ A is in
{∪jSj | j ∈ B}

Define

M as the size of the largest neighbourhood

m as the size of the largest set of points with each not in the
neighbourhood of any other.

A sequence of such datasets is sparsely correlated if
mM = O(n).
Heuristically, any two small sets of observations are probably
independent. Implies (but is stronger than) the condition that the
proportion of non-zero elements of the covariance matrix goes to
zero.
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Example of definition

Mammography inter-rater reliability study

Neigbourhood of (rater r, image i) is all readings with rater r or
image i

Two reading are independent if they have different raters and
images

Two pairs of readings are independent if none of the raters or
images in one pair are in the other pair.

M=raters per image + images per rater − 1

m=minimum of number of raters, number of images.
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Marginal models by quasilikelihood

Same approach as for longitudinal data. The model is

g (E [Yi|Xi]) ≡ g(µ) = β′X

and we estimate by solving

∑

i

Ui ≡
∂µi

∂β
wi(Yi − µi) = 0

for β, where wi are weights that ideally are close to 1/var[Yi].
More generally we allow a non-diagonal weight matrix W and solve

DTW (Y − µ) = 0

where D = ∂µi

∂β
. This commits us to modelling E[Yi|X] not

E[Yi|Xi].
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Difficulties

Asymptotic behaviour of the estimates is not obvious if m, M
both are large.

A non-diagonal weight matrix W may be inconveniently large,
especially if calculated as V −1 for some approximation to
var[Y ].

Standard error estimation is not so obvious either.
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Solutions: standard errors

Standard error estimation by sandwich estimator

var[β̂] = I−1JI−1

where

I =
∂

∑

i Ui

∂β

∣

∣

∣

∣

β̂

and
J =

∑

i; j∈Si

Ui(β̂)UT
j (β̂).

The restriction in the sum for J is important: the sum over all i, j is
identically zero.
Basically the same estimator as longitudinal, spatial, time series
data. The proof involves counting up fourth moment terms.
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Solutions: standard errors

In the simplest case where the data are correlated on two
non-nested factors the computation is easy in standard
software that can do longitudinal data analysis (eg Stata)

I−1JI−1 = I−1J1I
−1 + I−1J2I

−1 − I−1J12I
−1

where I−1J1I
−1 and I−1J2I

−1 are the sandwich estimators
clustering on each of the factors separately and I−1J12I

−1 is
the sandwich estimator clustering on the product of both
factors.

Note that if factor 2 is nested in factor 1 the second and third
terms here cancel, reducing correctly to the sandwich
estimator clustering on factor 1.
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Solutions: standard errors

In other correlated data settings the sandwich estimator is a
subsampling estimator applied to the estimating functions

longitudinal data

time series: the Newey–West estimator is a subsampling
estimator applied to estimating functions

spatial data: window subsampling of the estimating functions
gives a weighted sandwich estimator (Heagerty & Lumley
JASA 2000).

sparse correlation: subsampling of neighbourhoods Sj

gives a slightly different (weighted) sandwich estimator. In a
crossed design it would be IJ−1

1 I + I−1J2I
−1, without the

correction for double-counting. This is guaranteed positive
definite, but is likely to be less efficient.
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Solutions: large matrices

W = V −1 doesn’t have to be calculated explicitly since we only
need

DV −1

found by solving p linear equations.

Iterative sparse matrix techniques (preconditioned conjugate
gradient) can do this in about O(npM log M) time, rather than
the O(n3) of matrix inversion.
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Solutions: Consistency

To think about the asymptotics, consider a simple two-way design

Yij = µ + ηi + ζj + εij

with i = 1, . . . , k, j = 1, . . . ,K, k < K

ηi ∼ [0, σ2
η]

ζi ∼ [0, σ2
ζ ]

εi ∼ [0, σ2
ε ]

What do we need for Ȳ − µ to be asymptotically Normal?
If k → ∞, k/K → C ∈ [0, 1]

√
k

kK

(

∑

Y − µ
)

→d N
(

0, σ2
η + Cσ2

ζ

)
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Asymptotics

In the two-way design we have m = k, M = k + K − 1, n = kK.
A reasonable guess is that in general

√
m

n

(

∑

Y − µ
)

→d N(0, σ2)

under m → ∞, some conditions on M and some moment
restrictions on Y . This is true for the two-way design and for
independent data (with M = 1, m = n).

In fact Mm/n bounded, m → ∞, and bounded 4 + δ moments
are sufficient. Proof uses Stein’s method for CLT: a bound on
the error in the characteristic function involving fourth
moments. These conditions are not necessary but weaker
ones of the same sort probably are.

Given a CLT, standard methods show that GLMs work for
sparsely correlated data.
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Two-index asymptotics for GEE

The theory for marginal general linear models for longitudinal
data (GEE) is usually described in terms of a fixed maximum
number of observations per person ` and an increasing
number of people G.

Not clear how well it works when ` is large. Do dentists need
larger samples than opthalmologists?

Longitudinal data with increasing ` and G is sparsely
correlated: m = `, M = G, mM = n.

Independence working model should have no problems with
even very large clusters, number of clusters really is most
important parameter.

Other working models need a little more care: need to show
that the weight matrix converges fast enough to a constant.
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Back to GLMs and HIV

Nicole Mayer-Hamblett & Steve Self studied the evolution of
HIV within the body as disease progresses from initial
diagnosis to AIDS, using data from the Multicenter AIDS
Cohort Study. Published in Biometrics, June 2001

Multiple HIV isolates were sequenced at multiple points in time,
and the main interest was in how the diversity within the
population and the distance from the initial population
varied . In the future this might be augmented with other
information such as drug regimens.

These genetic distance measures are sparsely correlated
binomial data , indicating the proportion of base pairs or of
codons that differ.
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HIV diversity over time

HIV infection is initially well-controlled by the immune system, but
eventually escapes control and causes AIDS. According to one
theoretical account we should see three phases

Initially the diversity of the virus increases and the
‘quasi-species’ diffuses away from the initial form

Later the diversity of the virus stabilises but it still continues to
move away from the starting form

Finally, the distance to the starting form stabilises and the
diversity remains stable or decreases as successful mutants
dominate the population.

Fitting linear splines to the data within each person allows these
three phases to be identified. Our theory for sparsely correlated
data allows testing and confidence intervals. Previous analyses
had been unable to get valid tests.
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In Progress: Empirical Process CLT

Empirical process limit theorems are a useful gadget for
demonstrating convergence of estimating functions or objective
functions uniformly in the parameters even for
infinite-dimensional parameters.
Two main flavours

Uniform entropy: define a ‘dimension’ in terms of how many
little balls of radius ε it takes to cover all the functions. This
can’t increase too fast with n

Bracketing entropy: Come up with uniformly good finite
approximations to the functions. The standard proof of the
Glivenko–Cantelli theorem is a bracketing argument.

Uniform entropy arguments are very unfriendly to dependent data,
bracketing arguments aren’t too bad.
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Bracketing CLT

Needs a tail bound for the sum of observations. This is turned
into a bound for E[| supf f(Y )|] for finite sets of functions, and
then a very tricky recursive finite approximation and truncation
method is used to do the hard work (fortunately this is fairly
standardised).

For iid observations the tail bound is Bernstein’s inequality

P

[

∑

i

Yi > t

]

≤ 2e−
t
2

at+b

for a = max |Y |∞, b =
∑

i var[Yi]. The iid result is Ossiander
(Ann. Prob. 1987); van der Vaart’s (2000) book has the
simplest presentation.
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Bracketing CLT

For sparsely correlated data a version of Bernstein’s inequality still
holds: need to bound moments of the sum in terms of same
moments for independent data.

Typical term is E|Yi1Yi2 · · · Yir |. If an index ik is in the
neighbourhood of an earlier index, set it to be the same.

Each term is now a product of things that are either the same
or not in the same neighbourhood. Suppose each index
appears an even number of times. Then the term is bounded
by the same term for independent data.

If an index appears an odd number of times, combine it with
another index that appears an odd number of times. This is
always possible for even moments, and we can bound odd
moments by next higher even ones.

Count up how many different terms get mapped to the same
term for independent data to give a bound. Generalised Linear Models forSparsely Correlated Data – p.25/26



Summary

Marginal modelling of sparsely correlated data is
(computationally) very easy, even for unbalanced designs

The sandwich estimator and its relationship to subsampling of
estimating functions is a really useful idea
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